ГОЛУБЕВ Владимир Сергеевич, (24 мая 1936 - 5 января 2011)
доктор физико-математических наук, профессор,
заместитель директора Института по научной работе
Круг профессиональных интересов В.С. Голубева лежит в области лазерной физики и технологии,
физики плазмы и газового разряда.
Его научная деятельность началась в Московском Государственном университете сразу после его
окончания в 1959 году (1959-1962 гг.), продолжилась в Институте Атомной Энергии им. И.В.Курчатова
(ИАЭ) (1962-1980 гг.) и ведется с 1980 г. по настоящее время в ИПЛИТ РАН.
Основные направления его научных трудов относятся к тематикам:
1. Физика низкотемпературной плазмы.
В течение 1959-1976 гг. был выполнен цикл экспериментальных исследований
низкотемпературной неравновесной плазмы в магнитном поле (диффузия плазмы в магнитном
поле; магнитогидродинамическое (МГД) преобразование энергии).
Диффузия бестоковой плазмы в магнитном поле исследовалась при выполнении работы над кандидатской диссертацией в аспирантуре Физического факультета МГУ под руководством профессора В.Л.Грановского (1959-1962гг.) Нужно было выяснить, существуют ли физические условия в плазме, при которых ее диффузия поперек магнитного поля является классической, а не "турбулентной", каковой она оказалась практически во всех экспериментах с протеканием через плазму электрического тока. В диссертационной работе удалось показать, что условия для классической диффузии могут существовать в бестоковой плазме, но они далеки от тех условий, при которых проводились опыты в СССР и США по токовому нагреву плазмы в связи с проблемой управляемого термоядерного синтеза.
Магнитогидродинамическое (МГД) преобразование тепловой энергии в электрическую исследовалось В.С.Голубевым в 1962-1972гг. во время работы в ИАЭ им. И.В.Курчатова. В начале 60-х гг. в этом Институте была поставлена задача создания МГД-генератора (МГДГ) с газовым потоком для прямого преобразования тепловой энергии ядерного реактора в электрическую. Поскольку температура газа реально не могла превышать1000-1500 К, в МГДГ необходимо было создавать плазму с неравновесной электропроводностью, возникающей за счет нагрева электронов в поле силы Лоренца. С этой целью В.С.Голубевым с его сотрудниками А.Ф.Витшасом и М.М.Маликовым и В.А.Гурашвили были выполнены предложенные Е.П.Велиховым эксперименты по созданию самоподдерживающихся электрических разрядов за счет быстрого движения газа поперек магнитного поля, т.е. по созданию физической модели МГДГ.
В этих экспериментах было найдено, что вследствие развития ионизационной неустойчивости в плазме развивается ионизационная турбулентность; возникают структуры трех типов: регулярные слои, хаотическая и шнуровая структура. В низкотемпературном потоке газа, движущемся поперек силовых линий магнитного поля, был осуществлен самоподдерживающийся разряд с ионизационно-турбулентной плазмой. Было показано, что, несмотря на развивающуюся в плазме "ионизационную турбулентность", МГД - генератор с неравновесной электропроводностью физически осуществим. По итогам этих исследований В.С.Голубевым в 1974г. была защищена докторская диссертация и подготовлен обзор в соавторстве с Е.П.Велиховым и А.М.Дыхне, опубликованный в 1976г. в журнале МАГАТЭ "Atomic Energy Reviews".
2. Физика газового разряда.
В период 1972-1990 гг. были выполнены фундаментальные исследования непрерывного самостоятельного электрического газового разряда в быстропроточных молекулярных лазерах. Был установлен и исследован физический механизм разряда и показано, что последний представляет собой разряд новой, ранее в физике неизвестной формы: при давлениях газа 0,1-0,3 бар и температурах 200-500 К электронная температура составляет (1-2)?104 К; заряженные частицы поступают в объем газа из приэлектродных зон, ионизация в объеме практически не существенна; плазма разряда существенно неоднородна вдоль направления электрического тока и во многих случаях неустойчива, так что топология неустойчивостей имеет вид поперечных току страт или вытянутых вдоль тока шнуров. По результатам исследований газового разряда в мощных СО2-лазерах, проведенных в ФИАЭ в 70-е годы, в 1982 году был опубликован обзор в "Успехах Физических Наук" (УФН), подготовленный В.С.Голубевым в соавторстве с Е.П.Велиховым и С.В.Пашкиным; в 1990 году издательством "Наука" была издана монография "Тлеющий разряд повышенного давления", подготовленная в соавторстве с С.В.Пашкиным.
3. Исследование, разработка и создание мощных технологических СО2-лазеров.
В течение 1974-1996 гг. В.С. Голубевым с соавторами в ИАЭ им. И.В. Курчатова, а затем в ИПЛИТ РАН, было предложено, исследовано и разработано до уровня промышленных образцов, применяемых в народном хозяйстве, несколько типов технологических СО2-лазеров мультикиловаттного уровня мощности, в том числе быстропроточных, а также волноводных многоканальных.
ля улучшения технического уровня лазеров проведен цикл исследований по физике и технологии газового разряда (устойчивость, ресурс), а также по проблеме повышения оптического качества лазерного излучения. Исследованы механизмы неустойчивости газового разряда и показано влияние возникающих при этом неоднородностей на параметры качества излучения мощных технологических СО2 лазеров.
Впервые установлено и исследовано влияние неоднородностей плазмы и турбулентности потока газа на энергетическую эффективность и оптическое качество излучения лазера. Теоретически предсказан и подтвержден экспериментально новый эффект: резкое (на порядок величины, т.е. от 0.5% до 5%) усиление амплитуды пульсации плотности в турбулентном потоке газа при осуществлении в нем электрического разряда с термически неравновесной плазмой и генерации лазерного излучения этой активной средой. Эффект вызывается развитием локальной ионизационно-термической неустойчивости и светоиндуцированным ускорением V-T релаксации молекул на внутреннем пространственном масштабе турбулентности.
4. Физика взаимодействия лазерного излучения с веществом.
Начиная с 1982 г. по настоящее время В.С. Голубевым с соавторами ведутся исследования по физике лазерно-плазменного факела и физике образования канала глубокого проплавления в аспекте исследования гидродинамических нестационарных течений и неустойчивостей поверхности расплава в лазерной каверне. Установлены впервые такие физические явления, как низкопороговый оптический пробой газа у поверхности материала; образование канала лазерного проплавления за счет термокапиллярного эффекта; развитие нелинейных гидродинамических неустойчивостей расплава в глубокой лазерной каверне. Развиты качественные математические модели процессов, сопровождающихся образованием глубоких каналов "кинжального проплавления" в материалах пол действием интенсивных лазерных пучков, с акцентом на раскрытие механизмов гидродинамических неустойчивостей в этих процессах. Показано, что практически всегда эти процессы абсолютно неустойчивы и реально могут осуществляться в режиме нелинейных релаксационных колебаний и волн на поверхности и в объеме расплава. Выполнен ряд экспериментальных исследований процессов глубокого проплавления и продемонстрировано существование различных поверхностных волн и объемных колебаний.
Рассмотрены процессы образования парогазового канала при сварке с глубоким проплавлением. Нелинейный этап возникающих неустойчивостей может сопровождаться инжекцией микрокапель расплава в облучаемый лазером объем. Проанализирован возможный механизм импульсно-периодического переноса расплава в процессах образования ПГК и при сварке с глубоким проникновением пучка непрерывного лазерного излучения в материал. Этот механизм может быть обусловлен всплесками давления пара вследствие интенсивного испарения капель расплава.
Выполнены экспериментальные исследования и проделаны качественные теоретические модельные оценки процесса проникновения сфокусированного пучка непрерывного СО2-лазера киловаттного уровня мощности в водную среду. Сделан вывод, что параметры канала определяются в основном интенсивностью турбулентного конвективного теплообмена между стенками канала и окружающей жидкостью.
Выполнен качественный анализ физических механизмов удаления расплава в процессе лазерной резки материалов излучением непрерывного лазера. Проведенное рассмотрение совокупности гидродинамических явлений при лазерной резке позволило предложить качественное объяснение экспериментально наблюдаемой зависимости энергетической эффективности процесса и высот шероховатостей от скорости резки.
Исследования, проводимые В.С. Голубевым, неоднократно поддерживались Российским Фондом Фундаментальных Исследований.
В.С. Голубевым опубликовано около 260 научных работ, включая доклады на международных конференциях а также 10 книг. Под его руководством подготовлено и защищено 17 кандидатских диссертаций; он консультировал работы над десятью докторскими диссертациями. В течение 1972-1979 гг. был преподавателем МФТИ, где подготовил и прочел курс лекций по физике низкотемпературной плазмы. В 1980-1988 гг. он - профессор МГТУ им Н.Э. Баумана, где им также были подготовлены и прочитаны курсы лекций по физическим и инженерным основам технологических лазеров. На основе этих курсов издательством "Высшая школа" изданы учебники, занявшие призовые места на конкурсе Министерства высшего образования СССР. Принимал участие в качестве члена в работе специализированных ученых советов по докторским диссертациям: при ИАЭ им. И.В. Курчатова, при Институте высоких температур (ИВТАН), при Физическом факультете МГУ им. М.В. Ломоносова, при Всероссийском электротехническом институте (ВЭИ). Является заместителем председателя докторского совета при ИПЛИТ РАН.
В.С. Голубев - лауреат Государственной премии СССР за работы в области создания генераторов плазмы, а также дважды лауреат премии им. И.В. Курчатова. В 1996 г. ему присвоено звание "Заслуженный деятель науки Российской Федерации".
В течение 1980-1990 гг. был членом Междуведомственного научно-технического Совета по лазерной технологии при ГКНТ и АН СССР, являясь председателем секции по технологическим лазерам при этом Совете и регулярно проводя Всесоюзные семинары по лазерной технологии. Был сопредседателем Программных Комитетов крупных Всесоюзных и Международных конференций 1982, 1985, 1989, 1993, 1995, 2001, 2003, 2005, 2006, 2008, 2009 годов по применению лазеров в технологии, организуемых ИПЛИТ РАН, а также научным редактором и соредактором трудов этих конференций в "Известиях РАН" и в трудах Международного общества по оптической технике (SPIE).
Был участником проектов международного сотрудничества с Украиной, Китаем, Индией, Польшей, Болгарией и Беларусью. В течение ряда лет являлся членом редколлегий отечественных научных журналов "Квантовая электроника" и "Перспективные материалы", а также соредактором сборников научных трудов ИПЛИТ РАН.