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Introduction 
The radiation of the majority of modern lasers is homogeneously polarized. Ellipsometric 

parameters of radiation are the same in all points of the cross section of a laser beam. The field 
distribution over a cross section of laser beam is described by the solution of the scalar wave equation [1].  

However there is a big class of solutions of the vector wave equation presented inhomogeneously 
polarized modes (IPM) with unique physical properties. 

The modes with radial and azimuthal polarization are the most interesting from the practical point of 
view because they have full axial symmetry of all the beam parameters including polarization. This 
property is often useful for applications.  

There are two main conceptions to obtaining an inhomogeneously polarized mode IPM: internal-
cavity and external-cavity techniques. 

Among different intra-cavity methods of generation of such modes the diffractive mirrors with high 
local polarization selectivity take a particular place. The special groove drawing ensures maximum 
quality for a definite mode, for example with azimuthal polarization. Other modes will be depressed 
having substantial intra-cavity losses. This method is optimal for high power lasers, like CO2-lasers. Such 
lasers have high gain of active media, low quality of resonator and relatively low quality of radiation.  

Out-of-resonator methods of IPM formation are based on the coherent superposition of two usual 
modes TEMp1 (p=0, 1, 2…) with the help of an interferometer. An external cavity technique can be 
effectively used for lasers with a short wavelength, low gain and high resonator quality. The space and 
temporal coherence is much higher in such lasers than in high power lasers. These “high quality modes” 
can interact coherently outside the resonator. 

This report presents the review of the last achievements in description and generation of laser modes 
with axially symmetric polarization.  

1. Theoretical description of laser beams with axially symmetric polarization. 
The pictures presented in Fig. 1 are widely known. They schematically explain the principle of 

formation of IPM, radially and azimuthally polarized beams [2]. 
However the description of IPM following this scheme by using the classic solutions for Laguerre-

Gaussian modes is not resulting. The principal difficulties on this way are connected with serious inner 
contradictions of classic solutions not acceptable for analysis of IPM.  

It is known well that the classic solutions are in the state of contradiction with Maxwell equation 
∇E=0 [3]. It makes impossible to determine formally boundaries of applicability of such approximation. 
They also neglect the longitudinal component of field. It is not a direct consequence of paraxial 
approximation; it is an additional restriction of the theory. 
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Fig.1. Generation of radially and azimuthally polarized modes as a result of superposition 

of two linearly polarized modes TEM01.  

1.1. Paraxial approximation in cylinder coordinates. 

 Let us consider the radially or azimuthally polarized beams offering the most interesting cases of 
inhomogeneously polarized modes. A method of theoretical description of the radially or azimuthally 
polarized beams is presented that excludes any inherent contradictions and unjustified approximations. 

A solution will be sought in the class of azimuthally polarized modes. It has been proved in [4] that 
the condition of radial or azimuthal polarization automatically results in the axial symmetry of field 
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amplitude distribution. Represent the desired function in the form H=Hϕ(r,z)⋅eϕ(ϕ). The equation ∇E=0 in 
this case is satisfied, and the vector wave equation is reduced to the scalar type: 
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The solution of the last equation in paraxial approximation is r-z part of expression for Laguerre-
Gaussian modes TEMpq at q=1.  
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The electric field components Er and Ez are determined through Maxwell equation Eik= −×∇ H . 
These analytical expressions are quite cumbersome, so they will be written only for the beam waist of 
z=0. 
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The presented method of calculation for the mode with azimuthally directed field can not be 
formally used for the fields of radial direction. In fact, the representation of the field in the form of 
H=Hr(r,z)⋅er(ϕ)  is contrary to the equation ∇H=0. Physically this means that the azimuthally polarized 
mode (in the absence of other components of the same field) is available, but the mode with purely radial 
direction of the field does not exist. The presented method permits the field components to be calculated 
for two classes of modes: 

H=Hϕ(r,z)⋅eϕ(ϕ), E=Er(r,z)⋅er(ϕ) + Ez(r,z)⋅ez. 
E=Eϕ(r,z)⋅eϕ(ϕ), H=Hr(r,z)⋅er(ϕ) + Hz(r,z)⋅ez 

 
The set of two equations: the wave equation and ∇E=0 is additive. This means, in particular, that 

the superposition of such modes with arbitrary complex coefficients also corresponds to Maxwell 
equations.  

1.2. Longitudinal component of field 
One of the most interesting phenomena connected with inhomogeneously polarized laser beams is 

the longitudinal component of the electric field in the focal spot of lens. This direction of field is in 
contradiction with transverse nature of electromagnetic wave. It is interesting from the physical point of 
view, because the energy associated with this component is not transmitted. The classical solution for 
homogeneously polarized mode cannot be used directly for calculation of the longitudinal component of 
field just following to pictures like Fig. 1 for radially polarized mode. Classical solutions neglect the 
longitudinal component and they are in contradiction with Maxwell equation ∇E=0. Nevertheless, in IPM 
at sharp focusing this neglecting is unjustified both physically and mathematically. The reason is that the 
longitudinal component of the field has its maximum amplitude in the places where the “common” 
component of the field is zero. Despite the lack of deep insight into the physical nature of this component 
of the field, the first experiments have been run on its registration [5, 6]. The suggestions for practical 
application of this component have also been made. At sharp focusing the longitudinal component of 
electric field can be used in acceleration of relativist electrons [7, 8]. 

Analysis of these formulas gives several character features of this field component parallel to wave 
vector.  
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Fig.2. Calculated distributions of longitudinal 

component of electric field Ez and azimuthal 
component of magnetic field Hϕ in the waist of 
radially polarized modes of different order.  

 
1. The maximum of this field is on the beam axis, 

where magnetic field and radial component of 
electric field equal to zero. 

2. This field has additional efficient λ/w0 in 
comparison with Hϕ и Er.  

3. The imaginary unit in Ez means this field 
component changes in time with quarter 
wavelength phase shift with respect to magnetic 
field. This leads to time averaged Pointing vector 
connected with this component equals to zero. 
The energy connected with Ez is not transmitted,  
The explanation of the fact that the impossibility 

of this component transfer is due to the absence of 
magnetic field at the beam axis, which is found in the 
literature, is inexact. The magnetic field and the 
longitudinal component of electric field offer the 
overlapping radial distributions, though, in accordance 
with the derived expression, at all the points of the 
beam cross section in its waist the time averaged 
Pointing vector associated with longitudinal 
component of the field equals zero.  

Fig. 2 presents the distributions of Hϕ and Ez for 
the radially polarized modes R-TEMp1* with p=0, 1, 2. 

1.3. Debye approximation for sharp focusing 
The calculation procedure under consideration should be extended to Debye approximation: the 

method of field calculation in the lens focal plane [9-12]. The calculation of distribution for the 
azimuthally polarized component does not display any inherent contradictions, the calculation results are 
in agreement with Maxwell equation ∇E=0. The solution obtained the magnetic field Hϕ(r, z), for 
example, allows the calculation of the radial and longitudinal components of the electric field: 
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Expressions for components of fields in this case are:  
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Here θ1 is the angle determined by beam aperture and focal length of a lens. The field distribution in 

the waist corresponds to z=0. The analogous formulas can be written for the other field components: 
Eϕ(r,z), Hr(r,z), Hz(r,z). In this case we can take the electric field with azimuthal polarization Eϕ0(r) as an 
initial field. The use of Debye approximation for plane or radial polarization leads to formal contradiction 
with equation ∇E=0. 

 
Consider the peculiarities of coherent composition of two counter-propagating beams producing a 

standing wave. For definiteness, take the perfectly identical counter-propagating beams with zero phase 



 4

shift. The azimuthally polarized fields Hϕ(r, z) appear oppositely directed, and the resulting field is 
described by the expression Hϕ(r, z)-Hϕ(r,-z). Further, Maxwell equations are applied to find the electric 
field components Er and Ez. For the standing wave the following expressions are derived: 
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It is evident that in the waist z=0 we have the nodes of standing wave for the components of the 
fields Hϕ and Ez, and for the Er component an antinode is generated (Er is always zero on the beam axis). 
A unique situation has emerged when all the three components of field are zero at the coordinate origin. 
This feature will be discussed in detail in the following section. 

The conditions for realization of standing waves are typically ensured in the optical resonators with 
the aligned reflective mirrors which facilitate the generation of counter-propagating fluxes of radiation. In 
the case of standing wave the energy is not transferred for the transverse component of the field as well. 
However, in the case of the transverse component of electric field the physical reason for this 
phenomenon is quite different than for the longitudinal component. The longitudinal component of field 
that can not transfer the energy exists both in the traveling and standing waves.  

It is of interest to follow the relationship of phases in the field components for the traveling and 
standing waves. First consider a traveling wave. Let the time dependence be presented as Hϕ ~ sin(ωt). 
Then, according to formulae (4), with regard to phase relationships, Er ~ sin(ωt), and Ez ~ cos(ωt). Where 
the amplitudes of fields are not zero, the product of Hϕ and Er, averaged in time, is not zero, which means 
the energy transfer in the direction of wave vector. Nevertheless, the product of Hϕ and Ez is proportional 
to sin(2ωt), and averaging in time results in zero irrespective of the amplitudes of these fields. 

In the standing wave, the formulas (5), we have the following functions of time: Hϕ ~ sin(ωt), Er ~ 
cos(ωt), Ez ~ cos(ωt). It means the absence of the time averaged energy transfer for both field components 
Er and Ez. It is valid for the any points.   

2. The methods of generation of beams with axially symmetric polarization.  
Two main forms for conception to obtaining IPM are internal-cavity and external-cavity techniques. 

One of the internal-cavity techniques uses a diffractive mirror as one of resonator mirrors. It is preferable 
for lasers with high gain in the active media and low resonator quality.  

An external-cavity technique can be effectively used for lasers with a short wavelength, low gain 
and high resonator quality. The mode quality in such lasers is much higher than in high power lasers. 
These “high quality modes” can therefore interact coherently outside the resonator.  

The results of generation of IPM with the help of Sagnac interferometer are presented below.  

2.1. Diffractive mirrors for intra-cavity method of generation of IPM. 
The property of polarization selectivity for diffraction grating has long been known. For example 

the diffraction grating itself and technology of its manufacturing were described in details in [13]. They 
proposed to use this diffraction grating as a beam splitter. 

Another idea is to use such an optical component to ensure definite direction of plane polarization 
of laser beam. For this purpose the diffraction grating with metal coating and groove period d=12µm was 
installed in the industrial CO2-laser. The radiation came to the grating surface normally. The degree of 
polarization 98.5% at the output power 2.3 kW was achieved.  

The same grove parameters and technology of manufacturing as in [14] were used in the 
experiments of [15], but drawing of groves was adopted for the generation of radially polarized radiation. 
This diffractive mirror was used as the rear mirror of laser resonator.  

The diffractive mirrors were made by the photolithography and wet etching method. The reflectivity 
of the wave was ρ||=94% (if the vector of electric field is parallel to grooves) and ρ⊥ = 72% (if the vector 
of electric field is perpendicular to grooves). There is the comparison of two diffractive mirrors in the 
table.  

 



 5

 

  
Year of production 2000 2006 
Manufacturer ILIT RAS, Russia II-VI, USA 

Technology Photolithography, 
wet etching copper 

Diamond turning, 
gold coating 

Reflectivity, E⊥-E|| 94% - 72% 94% - 20% 
Price ----- ~ $1000 

2.2. Generation of inhomogeneously polarized laser beams using a Sagnac interferometer 
The main advantage of this method is its universality. It can be applied for any wavelength and for 

any type of IPM. 
A Melles Griot He–Ne laser with output power of 6.0 mW was used. This laser has a tube with a 

sealed Brewster window at one end and a mirror at the other. The mode TEM01 with a controlled direction 
of plane polarization can be selected through the aperture. The mutual orientation of the mode pattern and 
the electric field vector can be changed by rotating the λ/2 phase shifter. A beam expander increases the 
beam diameter for convenience. 

We used a Sagnac interferometer in our experiments. An attractive feature of the Sagnac 
interferometer is that both the interfering beams sample the same optical path with the same elements, so 
distortions of the optics have a minimal effect on the sensitivity of the differential signal [16, 17]. A 
simplified scheme of a Sagnac interferometer, which is based on standard optical components, is 
presented in Fig. 3a. 

The intensity distribution of two split beams can be mutually rotated by inserting a Dove prism 
(DP), as seen in Fig. 3b. The spatial orientation of the intensity distributions of the beams in plane F just 
after the lateral displacement polarizing beam splitter is absolutely the same. Then each beam passes the 
DP and an angle reflector (AR) in different sequence and comes to the lateral displacement beam splitter, 
which works now as a combiner. If both elements of the DP and AR have the same orientation in space, 
their common effect of rotating the beam intensity distribution will be zero. If the DP and AR possess a 
mutual orientation, as shown in Fig. 3c, θ=22.5°, the intensity distribution of each two beams will be 
rotated around the beam axis in opposite directions at an angle of 2θ=45° so that the total mutual rotation 
angle is 4θ=90°.  

Four λ/2 phase shifters were installed in this scheme in the places indicated by arrows. PS1 was 
used for correction of amplitudes of two beams after splitting. Correction was performed by rotating PS1 
around the beam axis. The axes of the second and third PS are parallel each other and oriented at an angle 
β=10.25° along the bisector of the angle θ between the DP and AR as shown in Fig. 4. These phase 
shifters are necessary to avoid changes of polarization made by the Dove prism. The beam polarization at 
the entrance and exit of the subsystem consisting of the three optical components (DP, PS2 and PS3) will 
be the same. 

The fourth PS was used for correcting a phase shift between two interfering beams on the beam 
combiner. The axis of this PS must be parallel (γ=0°) or perpendicular (γ=90°) to the AR edge. The 
correction of phase shift is performed by turning the PS around the line, which is perpendicular to the 
plane of drawing in Fig. 3. Fig. 5 shows the corresponding setup mounting on the optical table. 

The modes with radial and azimuthal directions of the electric field are only two representatives of 
the large family of inhomogeneously polarized modes that are solutions of the vector wave equation. 
Some of them are presented in Fig. 6. They can be obtained with the help of the suggested scheme. The 
experimental results of the typical diagnostics of radially and azimuthally polarized beams are presented 
in Fig. 6. The reconstructed beam from a Sagnac interferometer has a ring-type distribution of intensity 
(Fig. 7a). This beam passes through a polarizer-analyzer and the resulting picture is fixed on the screen. 
The Fig. 7b shows the experimental pictures for a mode indicated in Fig. 6e. The single difference 
between the mode in Fig. 6e and a radially polarized mode consists in a phase shift between two mode 
patterns combined at the exit of the interferometer. The diagnostically obtained pictures for a radially 
polarized beam are presented in Fig. 7c.  
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(a)

       
(b)

 
(c)

 

 

Fig.3. The scheme of a Sagnac 
interferometer. The simplified 
scheme (a); P and S are the 
corresponding polarization of two 
beams. The scheme with a Dove 
prism (b). The modified Sagnac 
interferometer configuration to 
produce laser beams with 
inhomogeneous polarization (c). 
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Fig.4. Graphical explanation concerning 
installation of half-wavelength phase 
shifters into experimental setup, where 
β = 10.25°, γ= 90°, and θ= 22.5° 

 
 
 
The suggested scheme based on a Sagnac interferometer is simple and inherently stable. This 

scheme has one beam exit and  high efficiency of beam transformation. 

Incident 
beam

Exit beam

Lateral 
displacement
polarizing
beamsplitter

λ/2 phase 
shifter #4

λ 2/ phase 
shifter #2

λ 2 / phase 
shifter #3

Dove prism

Angle reflector

 
Fig.5. Modernized Sagnac interferometer mounted on the optical table. 
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  a                b                c

d                 e                 f  
Fig.6. Several examples of inhomogeneously polarized resonator modes. a) The radially 

polarized mode R-TEM01*. b) The angle between E and radius is 45°. c) The azimuthally 
polarized mode A-TEM01*. d) The mode with different direction of electric field. e) The 
mode with different type of polarization. f) Helical mode with plane polarization. 

 (a)  (b) 
 

 (c) 
Fig.7. Experimentally obtained pictures of the modes with axially symmetric polarization.  

a) Intensity distribution in the cross section of the laser beam. 
b) The diagnostics of the mode with inhomogeneous polarization indicated in 
Fig. 6e. The intensity distribution is just after the polarizer-analyzer. The white line 
is the axis of the polarizer. c) The diagnostics the radially polarized beam indicated 
in Fig. 6a. The white line is the axis of the polarizer. The mode pattern rotates with 
rotation of a polarizer around the beam axis. 

3. Spherical modes 

 
A case of spherical mode will be considered which is of physical interest as a limit situation of 

sharp focusing. We have here the same circumstances as in examination of laser beams in the cylindrical 
coordinates. As in the previous case, a solution will be sought in the class of azimuthally polarized modes 
under the axial symmetry of the distribution of field amplitude H=Hϕ(r,θ)⋅eϕ. The equation ∇E=0 is in 
this case satisfied, and the vector wave equation is reduced to the scalar one: 
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The common solution of this equation is:  

)kr(j)(cosP.Const),r(H n
1
n ⋅θ=θϕ     (6) 

1
nP  - the associated Legendre polynomials. 

 jn – The spherical Bessel function of the first kind. At the choice of this function the expression describes 
standing wave resulting from superposition converging and diverging waves.  

The components of electric field are found from the equation ∇×H=ikE: 
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Here 0
nn PP = . Let’s calculate the energy flux through a sphere: 
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This permits the calculation of the constant in our expressions for the components of fields of any 
order modes provided that the energy flux is permanent. 
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The field energy associated with the non-propagating component of the field *** can be found by 
volume integration: 
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It is clear from the physical consideration that all the three components of the field Hϕ, Er, and Eθ 
must be zero in the centre of the sphere, which imposes a restriction on the choice of mode order 
n=2, 3, 4…. The Pointing vector calculated with regard to the components Hϕ, Eθ is radially directed, and 
it defines the convergent and divergent waves. The field Er is non-radiating. The polar angle distributions 
of the fields are determined by the corresponding Legendre polynomials and are shown in Fig. 8. It 
should be noted that the number of lobes in the distribution of the fields Hϕ, Er, and Eθ is increased with 
the number of mode, though the spatial localization of these components is different. The field Er of 
maximal amplitude is localized at the poles, while the components Hϕ, Eθ on the polar axis are, naturally, 
zero. 

The radial dependences of the field components Hϕ, Er and Eθ are illustrated by Fig. 9. 
The scales of two curves on the figures are different for n=2 and n=16. They were so chosen that the 

maximal amplitudes of the fields were much the same. This was done in order to emphasize an important 
qualitative peculiarity of the distributions under consideration. The radius of the zero field zone is 
increased with the mode number for the three field components. Recall that this significant result has been 
obtained from the solutions corresponding to Maxwell equations. This behavior of the fields implies that 
the field of higher-order modes does not reach the centre of the sphere. The convergent wave of the field 
possessing such a structure is “reflected” from the sphere having the radius of the order of n/k. 

Another qualitative feature of the presented distributions is that the longitudinal field is radially 
decreased faster that the components Hϕ and Eθ. The expression for the field amplitude contains an 
additional multiplier 1/kr. In practice, it means that the longitudinal field is located in some “spherical 
shell” of the radius and thickness growing with the mode number. This is evident from the outline 
drawings of the modes of different orders (Fig. 10). 

 

 
Fig.8. The distribution of field components Hϕ, Er, Eθ in coordinates: azimuthal angle – 

polar angle for spherical modes of the different order.   
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Fig. 11 illustrates the variation of the amplitudes of three components of the fields at the maximum 

as a function of the order of mode. The calculations were performed using the formulae with the 
coefficients for the permanent flowing of radiating energy from the sphere. All the three curves have been 
plotted on a single matched scale. The location of the maximums of the field components in the 
coordinates θ, r is displayed in Fig. 10. The coordinate rmax corresponding to the maximum value of the 
field for all the components Hϕ, Er and Eθ is determined from the simple formula krmax ≈ n. The maximum 
of the non-radiating field is always found at θmax = 0. For the components Hϕ, Eθ θmax = 45° at n=2 and 
tends to zero as n grows. 
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Fig.9. The radial dependence of field components Hϕ, Eθ, Er for the modes of different 

order.  

 
Fig.10. The distribution of field components Hϕ, Er, Eθ in coordinates: radius – polar angle 

for spherical modes of the different order.  
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We have given a consideration to the problem in the following order: finding the magnetic field Hϕ, 
calculating the components of the electric field Er, Eθ. Of course, the problem can be solved “in the 
reverse direction”, i.e. find the azimuthally directed electric field Eϕ and then calculate the components of 
the magnetic field Hr, Hθ which will produce a mode with an “opposite orientation of fields”. Here, as in 
the first case, Maxwell equation ∇E=0 is satisfied. The magnetic field directed along the radius Hr is in 
this case a “non-propagating component”. 
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Fig.11. The amplitude of field components Hϕ, Er, Eθ in maximum, as a function of mode 

order. 

Conclusion 
 
A method has been suggested for description of the azimuthally and radially polarized modes that 

excludes any inherent contradictions and unjustified approximations, as happens with the scalar theory of 
Laguerre-Gaussian modes. The solutions in the class of azimuthally polarized modes with the axial 
symmetry of field distribution are in accordance with Maxwell equation ∇E=0, and the wave equation is 
reduced to a scalar form. This allowed the analytical calculation of the field components for these modes, 
including the longitudinal one. The longitudinal field displays a time phase shift, so the energy associated 
with this field is not transferred. The formulae of field distribution at sharp focusing are presented for the 
arbitrary-order IPM. 

The paper analyzes the evolution of diffraction mirrors used in generation of IPM in high-power 
CO2 lasers. For the lasers of low power the out-of-resonator vector superposition of usual TEMp1 (p=0, 1, 
2…) modes by using of a Sagnac interferometer offers a promising scheme. This method is remarkable 
for its high efficiency, stability and universality. The paper reports the experimental results on this 
scheme.  

The calculation of the higher-order spherical modes yielded the original results. The centre of a 
sphere has a particular zone, the diameter of which is increased with the growth of mode order. All the 
components of electric and magnetic fields in this zone are zero. 
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