Мощные волноводные CO_2 - лазеры с высоким качеством излучения для технологии

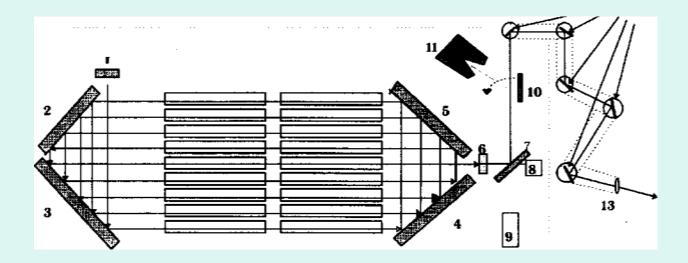
В.В.Васильцов, В.О.Александров, И.Е.Голев, Э.Н.Егоров, Е.В.Зеленов, А.Н.Семенов, А.В.Соловьев, Е.Д.Чашкин

Волноводные СО₂ -лазеры

- Продолжающееся развитие лазерных технологий обработки материалов выдвигает повышенные требования к источникам лазерного излучения, такие как надежность, высокое качество излучения, низкие эксплутационные расходы, высокий ресурс работы и малая стоимость.
- Среди различного типа лазеров для технологий CO_2 -лазеры продолжают занимать лидирующее положение . В ИПЛИТ РАН для технологических применений много лет разрабатываются многоканальные волноводные CO_2 -лазеры диффузионного охлаждения, возбуждаемые разрядом переменного тока звуковой частоты.
- К волноводным лазерам относятся газовые лазеры, например, CO2, CO, эксимерные Хе и KrF, в которых распространение лазерного излучения через активную среду происходит в волноводе. Отличие волноводных газоразрядных лазеров от обычных газовых лазеров состоит в наличии полого, например, диэлектрического волновода между зеркалами, который выполняет несколько функций. С одной стороны, его внутренняя поверхность ограничивает объем, заполненный активной средой, с другой стороны, он служит каналом, по которому распространяется лазерное излучение, является составной частью волноводного резонатора и определяет модовый состав излучения.
- Для волноводных CO_2 -лазеров легко реализуется основное их преимущество как технической системы компактность конструктивного исполнения и снижения на этой основе массогабаритных показателей.
- В ${\rm CO}_2$ лазерах волновод представляет собой, как правило, газоразрядную трубку, имеющую длину значительно больше внутреннего диаметра, который, в свою очередь, может в сотни раз превышать длину волны излучения.

Многоканальные однолучевые волноводные СО₂ лазеры

- Этот тип технологических лазеров обладают рядом достоинств, таких как:
- высокое качество (одна волноводная мода EH₁₁) и высокая стабильность излучения за счет волноводного режима генерации;
- рекордные массогабаритные характеристики;
- возможность работать на смеси CO₂: Не : воздух;
- низкие эксплуатационные расходы.
- Для расширения технологических возможностей многоканальных волноводных лазеров, таких как резка и сварка материалов и других применений там, где требуется высокое качество изучения, были разработаны и реализованы конструкции излучателей, в которых излучение последовательно обходит все каналы при параллельном расположении разрядных трубок. По такой схеме возможно создание компактных и дешевых одномодовых лазеров.


Первая модель многоканального однолучевого лазера ТЛ-500

В 1992-1993 г.г. разработана новая конструкция однолучевого волноводного многоканального CO_2 -лазера.

Лазер, обладая всеми достоинствами типоряда лазеров МТЛ с диффузионным охлаждением рабочей среды, возбуждаемой разрядом перерменного тока звуковой частоты, генерирует одномодовое излучение (волноводная мода ЕН₁₁) с практически с дифракционной расходимостью.

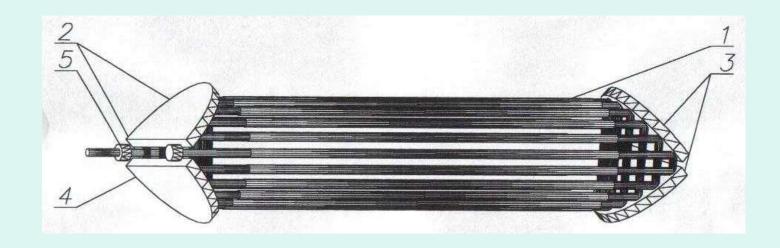
Оптическая схема резонатора лазера ТЛ-500

Блок генерации луча с выходным блоком и оптико-механических манипулятором

1 - заднее зеркало, глухое 2,3,4,5 - поворотные зеркала резонатора 6- переднеезеркало, полупрозрачное 7- поворотное зеркало выходного блока 8- измеритель мощности 9- трассировочный лазер 10- зеркало э/механического затвора 11- конус полного поглощения 12- поворотные зеркала оптического манипулятора 13- фокусирующая линз

Излучение из параллельно расположенных трубок (9 шт.) с помощью уголковых отражателей последовательно обходит все трубки, тем самым формируя один длинный резонатор. Вывод излучения осуществляется через полупрозрачное плоское зеркало из ZnSe.

Технологический волноводный CO₂-лазер (мод.ТЛ-300)



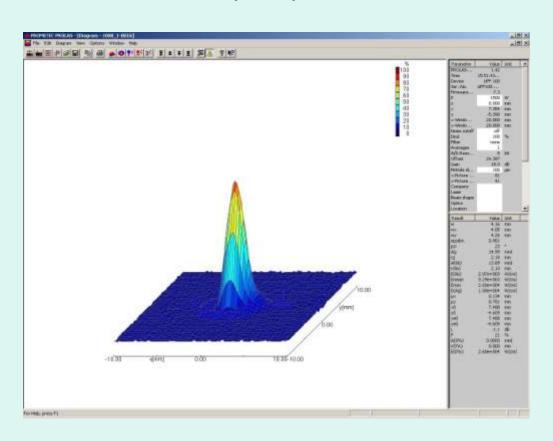
Для малых (до 400 Вт) средних мощностей излучения оказалось технически возможным реализовать воздушное охлаждение излучателя, что существенно повышает эксплуатационную привлекательность лазера. Такая схема реализована в модели ТЛ-300, внешний вид которой показан слева.

Технологический волноводный CO₂-лазер (мод.ТЛ-1200)

Оптическая схема резонатора лазера ТЛ-1200

1- кварцевые разрядные трубки, 2, 3 - поворотные зеркала, 4- заднее зеркало, 5- выходное зеркало.

Внутреннее устройство лазера ТЛ-1200



Распределение плотности мощности в дальней зоне (М 1200)

(снято прибором «Prometec»)

Расходимость по уровню 0.86 = 1.57 мрад Расходимость по уровню 0.9 = 1.67 мрад Р=1380 Вт , внутренний диаметр разрядной трубки -7 мм

Объемное распределение

Основные технические характеристики

	Параметр	ТЛ-300	ТЛ-1200	ТЛ-1500
•	Длина волны излучения, мкм	10,6	10.6	10.6
•	Номинальная мощность излучения,	320	1200	1500
•	Имппериод. режим генерации, кГц	0,2- 2,5	то же	то же
•	Нестабильность мощности излучения, %	< 2	то же	то же
•	Аппретура, мм	20 с телес	. то же	то же
•	Расходимость излучения , мрад	0.8 с телес	с. то же	то же
•	Расход газовой смеси, н.л./час	0,5	1,5	1.7
•	Расход охлаждающей воды, м3/ час	нет	0,7	0.8
•	Технический КПД, %	10	11	11
•	Габариты, м	0,6x0,6x1,5),6x1,2x2,2	0.6x1.2x2.5
•	Масса, кГ	220	380	400
•	Особеннности,охлаждение	воздушное	жидкост	. жидкост.

Образцы лазерной резки на лазера мод.ТЛ-300

