ИНСТИТУТ ПРОБЛЕМ ЛАЗЕРНЫХ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ РОССИЙСКОЙ АКАДЕМИИ НАУК

ОПТИЧЕСКИЕ НЕОДНОРОДНОСТИ АКТИВНОЙ СРЕДЫ ЭЛЕКТРОРАЗРЯДНЫХ СО₂-ЛАЗЕРОВ С АКСИАЛЬНОЙ ПРОКАЧКОЙ ГАЗА

Исполнители работ:

М.Г. Галушкин, В.С. Голубев, В.В. Дембовецкий, Н.Г. Дубровин, Ю.Н. Завалов, В.Е. Завалова, В.Я. Панченко, М.Н.Тарасов

Исследовано влияние газового разряда и лазерной генерации на оптические неоднородности активной среды непрерывных электроразрядных CO₂-лазеров с аксиальной прокачкой газа (АПГ). Приведена методика расчета генерационных характеристик CO₂-лазера этого типа на основе одномерной кинетической модели с учетом радиальной неоднородности накачки и температуры. В случае накачки в самостоятельном продольном разряде радиальная неоднородность усиления активной среды, обусловленная радиальной неоднородностью температуры и сжатием разряда к осевой области газоразрядной трубки, приводит к снижению энергетической эффективности лазера. Кроме того, исследуется проблема формирования в оптическом лазере нелинейной рассеивающей газовой линзы. Показано существенное влияние на выходные параметры лазера эффекта накопления отрицательных ионов, а также как амбиполярной, так и турбулентной диффузии.

Публикации

Опубликовано свыше 15 статей и докладов в журналах и сборниках: препринты, сборники трудов и монографии ИПЛИТ РАН; «Известия РАН», «Квантовая электроника», «Теплофизика высоких температур», «Приборы и техника эксперимента»; «Proceedings of SPIE»

Основные публикации

Dembovetski V.V., Zavalov Yu.N. Industrial fast-axial flow carbon dioxide lasers in Russia, In: Kossowsky, Ed., High Power Lasers: Science and Engineering, Kluwer Academic Press, Dordrecht, p. 603-618 1996 **Лазерные технологии обработки материалов:** современные проблемы фундаментальных исследований и прикладных разработок / Под ред. В.Я. Панченко. — М.: ФИЗМАТЛИТ, 2008. — 704 с. — ISBN 978-5-9221-1023-5.

Содержание

1. Введение

2. Особенности СО2-лазеров с аксиальной прокачкой газа

3. Влияние диффузии и накопления отрицательных ионов на радиальное распределение электронов в разряде постоянного тока в потоке молекулярной смеси углекислого газа, азота и гелия

4. Кинетическая модель активной среды СО2-лазера с АПГ

5. Исследование радиальных неоднородностей активной среды лазера

6. Выводы

1. Введение

Непрерывные CO₂-лазеры с аксиальной прокачкой газа (ЛАПГ) относятся к основному типу технологических лазеров киловаттного диапазона мощности. Использование быстрой продольной прокачки активной среды через разрядный промежуток дало принципиальную возможность получения когерентного излучения киловаттного уровня на установках приемлемых габаритов [1].

Обладая рядом хорошо известных преимуществ перед другими технологическими лазерами [2], ЛАПГ имеют свои особенности, одна из которых – радиальная неоднородность скорости прокачки, температуры и параметров усиления, что обусловлено особенностями формирования разряда в быстром потоке газа, проходящем через газоразрядные трубки (ГРТ), ограниченного поперечного размера.

Исследованию свойств быстропрокачных электроразрядных СО2-лазеров уделялось значительное внимание [3, 4]. Однако вопросы пространственной неоднородности тлеющего разряда постоянного тока в турбулизированном потоке ограниченного поперечного размера и ее влияния на качество излучения и предельные энергетические характеристики CO₂-лазера с АПГ изучены были недостаточно полно. Обозначились проблемы дальнейшего улучшения качества выходного пучка, повышения энергетической эффективности, повышение яркости лазерного источника, снижения уровня потребления газовой смеси, т.е. сложные научно-технические задачи повышения эффективности и конкурентоспособности технологического оборудования. Оказалось, что решение этих проблем невозможно без соответствующего изучения физических процессов, происходящих в активной среде такого лазера. Актуальность проблемы возрастает в связи с задачами повышения мощности одномодового ЛАПГ свыше 3 кВт, когда усложняется согласование ГРТ с устойчивым одномодовым резонатором при сохранении высокой эффективности преобразования электрической энергии в энергию излучения. Как было показано в ряде работ [5, 6], турбулентность газового потока в лазерах этого типа неоднозначно влияет на устойчивость газового разряда, а также на качество лазерного пучка, так как, с одной стороны, она снижает неоднородность активной среды, но, с другой стороны, увеличивает степень мелкомасштабных и нестационарных неоднородностей. Турбулентная диффузия возбужденных молекул активной среды должна увеличивать к.п.д. использования ее объема, а само генерируемое излучение может влиять на степень однородности плотности газа [7]. Учитывая все это, нами было предпринято комплексное экспериментальное и расчетное исследование характеристик активной среды и поля лазерного излучения в СО₂-лазерах с АПГ.

Пример технологического СО2-лазера с АПГ ТЛА-600

В экспериментах использовался CO₂-лазер с быстрой аксиальной прокачкой газа ТЛА 600-киловаттного уровня, разработанный в ИПЛИТ РАН. [8]. В четырехпроходном резонаторе лазера было установлено восемь газоразрядных трубок (ГРТ) длиной *L*=18 см и радиусом *R*=8.8 мм. Поступление газовой смеси CO₂:N₂:He=1/6/10 в ГРТ осуществлялось через боковое отверстие (турбулизатор) диаметром 12 мм.

Это обеспечивало формирование стабилизирующего характеристики разряда турбулизированного потока, скорость которого составляла *v*=120 м/с. Давление на входе ГРТ составляло 85 hPa. Лазер мог работать как в непрерывном, так и в импульсно-периодическом режиме с трехкратным превышением номинальной мощности лазера в импульсах. В зависимости от задач эксперимента данная установка, рис.1, модернизировалась, и конкретные его параметры указываются ниже при описании проведенных экспериментальных работ.

Рис. 1 Вид экспериментальной установки ТЛА-600

2. Особенности CO₂-лазеров с аксиальной прокачкой газа

СО₂-лазеры с аксиальной прокачкой газа относятся к типу лазеров с конвективным охлаждением рабочего газа и замкнутым типом прокачки. Типичная схема СО₂-лазерах с АПГ представлена на рис. 2.

Газовая смесь CO₂-N₂-Не продувается с помощью компрессора 1 через несколько параллельно подсоединенных к нему газоразрядных трубок 2. Подвод неравновесной энергии для создания инверсии колебательных уровней происходит в тлеющем разряде внутри ГРТ с помощью внешнего источника электроэнергии. Трубки установлены внутри оптического

резонатора так, что лазерный пучок от одного зеркала резонатора 3 до другого последовательно проходит внутри каждой ГРТ. В ГРТ газ нагревается и затем охлаждается в теплообменнике 4. Вследствие ограниченного поперечного размера газоразрядной трубки в лазерах с АПГ стабилизация газового разряда может осуществляться, как мы увидим ниже, за счет процессов переноса частиц газа в поперечном по отношению к потоку газа направлению.

Типичная конструкция ГРТ в случае накачки в тлеющем самостоятельном разряде постоянного тока приведена на рис. З. Аксиальная симметрия потока и разряда газа в этом случае благоприятно сказывается на качестве формируемого пучка, так что такие лазеры характеризуются высокой преобразования эффективностью электрической энергии разряда в энергию лазерного излучения (высоким электрооптическим к.п.д.) при достаточно высоком качестве пучка, приемлемых габаритах установки и довольно низком потреблении газов [9, 10, 11].

Конструкция ГРТ [12] для накачки в поперечном высокочастотном (ВЧ) разряде приведена на рис. 4. В этом случае пространственно разворачивают плоскости расположения электродов на разных ГРТ [13], добиваясь осесимметричности интегральных искажений лазерного пучка.

К настоящему времени накоплен большой опыт по теоретическому и экспериментальному исследованию продольного тлеющего разряда постоянного тока в потоке газа повышенного давления [14, 15, 16]. А именно, исследованы вопросы устойчивости разряда, процессы формирования стационарных продольных неоднородностей поля и заряженных частиц, приэлектродные процессы, особенности плазмы электроотрицательных газов.

Было что показано, вольтамперные характеристики стационарного электрического потоке разряда в газа, продольные электрического поля распределения и заряженных частиц определяются не только приэлектродными процессами и локальными реакциями рождения и гибели зарядов, но и процессами продольного переноса: дрейф вдоль по полю, амбиполярный дрейф в электрическом неоднородном поле, CHOC заряженных ионов потоком газа. При этом появляются дополнительные механизмы переноса, связанные С зависимостью подвижности ионов ОТ приведенного электрического поля и др.

Было также исследовано влияние направления скорости потока на параметры формирующихся в продольном разряде областей электронейтральной плазмы: прианодной области повышенного поля, сравнительно однородной области положительного столба и участка повышенной проводимости у катода – так называемого темного фарадеевого пространства (вернее, его аналог, возникающий при повышенной плотности газа).

Существует ряд особенностей формирования разряда в CO₂-лазере с АПГ. А именно, в условиях стационарной неоднородности электрического поля стабилизация занимаемого разрядом пространства в ГРТ осуществляется в основном за счет объемных процессов локального рождения и гибели заряженных частиц и процессов переноса заряженных частиц в поперечном прокачке направлении, что близко к проблематике создания CO₂-лазеров с поперечной прокачкой газа [см. напр. 14, 15].

С другой стороны, ограниченные поперечные размеры ГРТ (около 2 см) приводят к необходимости учитывать близость границ. Аналогичные эффекты возникают в лазерах с диффузионным охлаждением [17]. В частности, необходимо учитывать поперечный градиент температуры. Однако, в отличие от лазеров с диффузионным охлаждением, возникающий в результате поперечный градиент температур определяется, главным образом, не теплоотдачей на стенку трубки, а процессами конвективного переноса в условиях турбулентного потока. (В потоке газа с числом Прандтля *Pr*~0,3, с числом Рейнольдса *Re*~10³ число Пекле *Pe*, определяющее соотношение между конвективным выносом тепла и теплопроводностью, составляет несколько сотен.)

Кроме того, в лазерах этого типа с радиусом апертуры пучка **A**, близким к радиусу ГРТ и длиной резонатора **L**_{res} число Френеля:

$$N_F = A^2 / \lambda L_{res} \,, \tag{2.1}$$

не превышает несколько единиц (λ – длина волны лазера, около 10.6 мкм). В таком случае также необходимо учитывать фактор неравномерного заполнения ГРТ излучением. В этой связи возникает вопрос о влиянии пространственной неоднородности продольного самостоятельного разряда постоянного тока на генерационные характеристики CO₂-лазера.

3. Влияние диффузии и накопления отрицательных ионов на радиальное распределение электронов в разряде постоянного тока в потоке молекулярной смеси углекислого газа, азота и гелия

Накачка колебательных уровней молекул в лазере происходит главным образом при неупругих столкновениях молекул с электронами разряда. Для определения факторов, влияющих на пространственное распределение электронов, были рассмотрены процессы в газовом разряде в сечении ГРТ. Учтено, что для значений коэффициента диффузии ионов **D**⁺=2 см²/с [18] и характерных значений коэффициента турбулентной диффузии D_{turb}=150 см²/с, между коэффициентами амбиполярной диффузии ионов и электронов выполняются соотношения:

$$D_a^+ = D_+ (1 + 2\chi) / \chi << D_{turb}, D_a^e = D_+ (1 + 2\chi) \cdot \gamma \ge D_{turb}.$$
(3.1)

Здесь введены обозначения $\chi = n_{-} / n_{e}$, $\gamma = T_{e} / T$, где n_{-} , n_{e} - концентрация отрицательных ионов и электронов в разряде, $n_{+} = n_{-} + n_{e}$, T_{e} –температура электронов в разряде и T – температура газа. Отрицательные ионы образуются, например, в реакциях CO₂+e=CO+O⁻ [19]. Процессы отлипания в разряде существенно влияют на локальное значение *E/N* (отношение локального значения напряженности электрического поля *E* к плотности газа *N*), на что обращено внимание в работе [20].

В случае с аксиальной прокачки лазерной смеси кроме радиальной возникает продольная неоднородность плазмы, которая приводит к конвективному выносу электронов и др. указанным выше эффектам [14]. Однако этот фактор в рассматриваемой области положительного столба не оказывает существенного влияния на баланс электронов, потому что концентрация их, вследствие превышения почти на порядок скоростей локальных процессов рождения и гибели частиц и скорости конвективного выноса [15], изменяется вдоль оси трубки довольно слабо.

В случае, когда ось оптического резонатора совпадает с направлением прокачки газа и направлением электрического поля в разряде, лазерный пучок последовательно проходит участки вдоль этих неоднородностей, и его параметры, таким образом, зависят от усредненных вдоль оси *z* ГРТ параметров накачки. Поэтому в данной работе в расчетах и оценках принималось условие постоянства вдоль по разрядной трубке приведенного к плотности газа значения электрического поля: *E*/*N*≈const. Далее, при направлении прокачки от анода к катоду существенно снижается размер прикатодной области пониженного значения поля. Кроме того, возможен вынос узкой прианодной области повышенного поля за пределы области излучения [21].

При численном нахождении распределения электронов по поперечному сечению трубки находилось с учетом осесимметричности стационарное решение уравнения:

$$\frac{\partial n_e}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r (D_a^e + D_{turb}) \frac{\partial n_e}{\partial r} \right) + v_i n_e - (1 + \chi) \beta_r n_e^2.$$
(3.2)

 v_i – частота ионизации ($v_i \approx A(N) \exp(-B/(E/N))$, [16]), $\beta_r \approx \beta_{ri}$ – коэффициенты электрон-ионной и ион- ионной рекомбинации, принято допущение, что параметр χ , описывающий количество отрицательных ионов, постоянен во всем объеме. Конкретное его значение определялось из условия согласования вычисленного полного тока (при давлении 60 гПа и диаметре ГРТ 2 R_t =18.5 мм) с экспериментально измеренной вольт-амперной характеристикой (BAX) разряда в ГРТ установки ТЛА-600.

ВАХ приведена на рис.5 в виде зависимости приведенной напряженности поля *E/N* от среднего ГРТ энерговклада *W* в разряд с учетом нагрева газа в разряде, [20]. При решении уравнения в изобарическом приближении приходится учитывать зависимость частоты ионизации v_i и плотности газа от *T* и *r*. Уравнение для температуры *T* следует из условия теплового

Рис. 5. Зависимость *E/N* от энерговклада *W* для газовой смеси CO₂:N₂:He =1:6:10 в диапазоне давлений 60-85 гПа (эксперимент).

Рис. 6. Радиальное распределение плотности тока в ГРТ, при удельном энерговкладе: 1. W=6 Bт/см³, 2. W=8,5 Bт/см³, 3. W=10,8 Bт/см³, 4. W=13 Bт/см³ (расчет). баланса. Анализ уравнения для **7** показывает, что ее радиальный профиль имеет форму, близкую к параболической [22]. Поэтому при численном решении уравнения (3.2) распределение температуры по радиусу аппроксимируется параболической функцией. Остальные элементы численного решения повторяли методику, изложенную в [17]. В частности, уравнение (3.2) решалось методом установления путем сведения по разностной схеме к линейному неоднородному уравнению с учетом сделанных выше замечаний. При решении на каждом слое использовался метод неявной прогонки. При этом использовались значения $\beta_r = 1.6 \cdot 10^{-7} c_M^3 / c$, D_T =150 см²/с. Значение D_a^e равное 250 см²/с, соответствует значениям χ в несколько единиц. Значения частоты ионизации, как функции *E/N*, определялись из [23] для смеси CO₂:N₂:He =1:7:12. Полученное в результате расчета значение χ уменьшалось с ростом энерговклада с χ =3 при 24 мА до χ =2 при 60 мА, что согласуется с экспериментальными данными [24].

Результаты расчета представлены на рис. 6, где показаны вычисленные зависимости плотности тока *j(r)* для разных значений полного тока разряда в ГРТ [25]. Обращает на себя внимание заметное отличие распределений по радиусу концентрации электронов (для W=6 Bt/cm³ и W=13 Bt/cm³) от функции Бесселя.

Анализ решения

На основании решения уравнения (3.2) можно оценить в осесимметричном случае размер *R*_d разрядного шнура, стабилизируемого амбиполярной диффузией [15, 26].

В случае, когда электроны рождаются на оси трубки:

$$R_{d} = 2\sqrt{\frac{D_{a}^{e} + D_{turb}}{(k_{i}N - (1+\chi)\beta_{r}n_{e})}}.$$
(3.3)

Подставляя типичные значения $n_e = 4,8 \cdot 10^{10} cm^{-3}, N = 10^{18} cm^{-3}, k_i = 2.5 \cdot 10^{-14} cm^6/c, \beta_r = 1.6 \cdot 10^{-7} cm^3/c, D_a^e + D_{turb} = 300 cm^2/c, \chi = 1,5$ получим $R_d \approx 3,3 mM$.

Для случая объемной ионизации

$$R_d \approx 2,405 \sqrt{\frac{D_a^e + D_{turb}}{(k_i N - (1 + \chi)\beta_r n_e)}} \approx 4_{MM}.$$
(3.4)

Наличие отрицательных ионов в разряде приводит к тому, что амбиполярная диффузия электронов возрастает примерно в (1 + 2χ) раз, кроме того, в (1 + χ) раз возрастает эффективная скорость рекомбинации зарядов. Как следует из (3.3) в этом случае радиус разрядного шнура более чем на порядок превышает значения, определяемые на основе теории Шоттки [27].

Турбулентность газового потока также является важным фактором, влияющим на однородность заполнения объема разрядной трубки свечением разряда.

Авторы работы [28] придавали особое значение увеличению турбулентной диффузии, для чего устанавливали перед ГРТ дополнительное количество турбулизаторов с увеличением степени компрессии прокачного устройства. При этом не уделили внимания вопросу накопления отрицательных ионов в разряде. Ведь при выбранной ими схеме прокачки от катода к аноду снижается эффективность накопления отрицательных ионов вследствие их дрейфа вниз по течению, а при обратном расположении электродов скорость электрического дрейфа вверх по потоку может компенсировать скорость уносящего ионы газового потока.

В цикле работ [29, 30, 31, 32] при сравнении экспериментальных результатов измерения пространственных параметров активной среды CO₂-лазера с АПГ с результатами трехмерного моделирования сделан, в частности, вывод, что коэффициент амбиполярной диффузии электронов должен был иметь значение свыше 600 см²/с. В тоже время не учитывалось турбулентное перемешивание в потоке газа. Такое возможно при концентрации отрицательных ионов более чем на порядок превышающих концентрацию электронов. Если принять значение константы скорости прилипания электронов $k_a = 6 \cdot 10^{-14} c M^3 / c$ [20], то оценка константа отлипания в этом случае составит $k_d = k_a / \chi = 0, 6 \cdot 10^{-14} c M^3 / c$., что очень трудно реализуемо.

В [33] была предложена следующая аппроксимация для константы скорости отлипания

$$k_d = 10^{-14} c M^3 / c \cdot (1 + 10^5 \xi_{H_2O}), \qquad (3.5)$$

-где ξ_{*H*₂*O*} – парциальная доля воды в смеси. Согласно этим данным увеличение паров воды в составе смеси должно приводить к резкому росту скорости отлипания электронов, снижению амбиполярной диффузии электронов (при χ<<1 до величин порядка 40 см²/с) и уменьшению размера разрядного шнура (3.3) до размеров менее 1 мм).

Для проверки влияния паров воды на поперечный размер разряда в ГРТ в контур CO₂-лазера с АПГ выходной мощностью лазерного излучения 1 кВт помещалась специальная трубка из отожженной меди, стенки которой не совсем герметичны вследствие пористости материала. При этом натекание воздуха в контур лазера практически не изменилось, составляя величину 0.4 нл/час. В процессе работы лазера при наполнении этой трубки водой через концы, которые были выведены наружу герметичного контура лазера, разрядные области в ГРТ перешли в контрагированную форму: имели зигзагообразную форму шнуров с поперечным размером 1-2 мм, при этом отсутствовала лазерная генерация.

Т.о., как турбулентная диффузия, так и наличие отрицательных ионов влияют на радиальное распределение электронов в разряде CO₂-лазера с АПГ, а именно: с увеличением коэффициента турбулентной диффузии и степени электроотрицательности разряда возрастает однородность самостоятельного тлеющего разряда в потоке активной смеси.

4. Кинетическая модель активной среды CO₂-лазера с АПГ

Поскольку значительная часть энергии электронов разряда уходит на возбуждение первых 8-ми колебательных уровней молекулы N_2 и/или, переходит в асимметричную моду молекул CO_2 , а вероятность релаксации с этих внутримолекулярных колебаний в тепло довольно мала, то это приводит к неравновесности рабочей смеси. Была рассмотрена одномерная модель кинетики колебательно-вращательных уровней молекул в активной среде CO_2 -лазера с АПГ на основе работ [34, 35, 36]. В ней принято, что Ферми-резонанс в молекуле CO_2 приводит к быстрому установлению равновесия заселенностей колебательных уровней симметричной (n00) и деформационных (0n0) мод, что позволяет их объединить в одну моду. Также не учитывалось влияние продуктов химических реакций, таких как CO, NO и др., а также неконтролируемых примесей: воды, паров масла, аргона. В соответствии с этими работами, введем обозначения: k_{43} , k_{32} , k_{20} – скоростные коэффициенты обмена квантами, k_{43} – между колебательными уровнями азота и асимметричной модой CO_2 , k_{32} между модами CO_2 (00) и CO_2 (0n0+n00), k_{20} – VT релаксация с нижних уровней CO_2 (0n0+n00).

Одномерная кинетическая модель активной среды СО2-лазера с АПГ

В одномерном случае изменения параметров активной среды вдоль потока газа система уравнений в изобарическом приближении принимает вид:

$$\frac{\partial e_4}{\partial x} = \frac{\eta_4}{\Delta E_3 \gamma_n} \frac{W}{Nv} - \frac{Nk_{34}\gamma_c}{v\gamma_n} e_4$$

$$\frac{\partial e_3}{\partial x} = \frac{\eta_3}{\Delta E_3 \gamma_c} \frac{W}{Nv} - \frac{Nk_{32}}{v} e_3 - \frac{\alpha J}{Nvhv\gamma_c} + \frac{Nk_{43}}{v} e_4$$

$$\frac{\partial e_2}{\partial x} = \frac{\eta_{12}}{2\Delta E_2 \gamma_c} \frac{W}{Nv} + \frac{3}{2} \frac{Nk_{32}}{v} e_3 - \frac{Nk_{20}}{v} (e_2 - \bar{e}_2) + \frac{\alpha J}{Nvhv\gamma_c}$$

$$\frac{\partial T}{\partial x} = \frac{\beta_t}{C_p} \frac{W}{q} + \frac{N^2 \gamma_c}{c_p q} k_B \Big[(\theta_3 - 3\theta_2) k_{32} e_3 + 2\theta_2 k_{20} (e_2 - \bar{e}_2) \Big]$$

$$(4.1)$$

где $e_j = r_j / \left(\exp\left(\frac{\theta_j}{T_j}\right) - 1 \right)$ - число колебательных квантов; θ_j , r_j - характеристическая температура и степень вырождения *j*-ой моды CO₂: *j*=1 – симметричная , *j*=2 - деформационная, *j*=3 – асимметричная моды, *j*=4 - N₂; $\Delta E_2 = \theta_2 k_B$, $\Delta E_3 = \theta_3 k_B$,

 $\theta_1 = 1997$ К, $\theta_2 = 960$ К, $\theta_3 = 3380$ К - характеристические температуры симметричной, деформационной и антисимметричной мод, W = jE - удельная объемная мощность разряда; γ_c - молярная доля CO₂ в смеси, γ_n - N₂; $\eta_4, \eta_3, \eta_{12}$ - доли мощности, идущие на возбуждение колебательных степеней свободы N₂, CO₂ (00n), CO₂ (0n0+n00), β_t – доли мощности на прямой нагрев газа; α - коэффициент усиления излучения; J- интенсивность излучения; v- скорость течения смеси, $q = \rho v \approx const$ - массовый расход газа через трубку, отнесенный к площади ее сечения S.

Уравнение для температуры:

$$c_{p}\rho\left[\frac{\partial T}{\partial t}+v\frac{\partial T}{\partial x}-\vartheta_{t}\Delta_{r}T\right]=\beta_{t}W+N^{2}\gamma_{c}k_{B}\left[\left(\theta_{3}-3\theta_{2}\right)k_{32}e_{3}+2\theta_{2}k_{20}\left(e_{2}-\bar{e}_{2}\right)\right],$$
(4.5)

где *c*_{*p*}, *ρ* - удельная теплоемкость смеси при постоянном давлении и плотность смеси. Коэффициент лазерного усиления для P(20) рассчитывался по формуле из [37]:

$$\alpha = 5,68 \cdot 10^{-18} \cdot \frac{\exp(-223/T)}{T} \frac{2H(b,0)}{\Delta v_d} (e_3 - e_1) \frac{N\delta_1}{\Sigma(T_3, T_2, T_1)}$$
(4.6)

где *H*(b,0) – функция Фойхта для центра линии; Δν_d – доплеровская ширина линии, Σ(*T*₃,*T*₂,*T*₁) – статистическая сумма колебательных степеней свободы молекулы CO₂ *Численные расчеты параметров усиления* проводились для параметров экспериментальной установки CO₂-лазера с АПГ ТЛА-600. Использовалась смесь газов CO₂:N₂:He =1:6:8 при давлении 50...80 гПа. ГРТ лазера имели межэлектродный промежуток *L*_d 0,2 м. Длина послеразрядной зоны составляла 0,12 м. Расчитывалось распределение вдоль потока газа коэффициента усиления α(*z*,*I*) для нескольких значений интенсивности *I* лазерного пучка. По этим значениям определялись усредненный вдоль по потоку коэффициент усиления слабого сигнала и эффективное значение интенсивности насыщения.

Усиление слабого сигнала

На рис. 7 представлены результаты вычислений, уравнения (4.1)-(4.6), а именно, зависимости коэффициента усиления *а* от продольной координаты z для разных интенсивностей излучения в резонаторе [38].

На рис. 8 показаны результаты расчета среднего по длине разрядной трубки коэффициента усиления слабого сигнала g_0 в зависимости от удельного энерговклада при трех значениях давления газа. В рамках рассматриваемой модели коэффициент усиления возрастает с ростом удельного энерговклада в рабочей области энерговклада, достигая значений 1,4...1,6 м⁻¹, что расходится с экспериментальными данными по измерениям ненасыщенного коэффициента усиления активной среды CO₂-

лазера с АПГ. Данные по измерениям методом пробного пучка приведены в работах [39, 40], данные с использованием метода калиброванных потерь и вариации длины активной среды – в работах [41, 42]. В этих экспериментах наблюдалось существенно более слабая зависимость коэффициента усиления от энерговклада, а абсолютное значение не превышало 1,4 м⁻¹ при тех же параметрах газа и скорости прокачки.

Численное моделирование ЛАПГ проводилось в работах [22, 30, 43, 44]. Но в этих работах не рассматривался вопрос о дополнительном усилении и нелинейном поглощении в излучения в релаксирующей за зоной разряда газовой смеси, и о параметрах насыщения усиления. Кроме того, в этих работах было получено, что при средних давлениях 50...100 гПа коэффициент усиления слабого сигнала g_0 растет с ростом давления, что противоречит экспериментальным данным [40, 42, 45]. В модели (4.1)-(4.6), как и в [45], где рассматривался диапазон работы лазера свыше 90 гПа, g_0 понижался с ростом давления смеси. Расхождение результатов, скорее всего, заключается в том, что необходимо учитывать для данного диапазона давлений смеси смешанный типа уширения линии [3].

Особенности насыщения активной среды

Заметим, что в работе [45] параметр интенсивности насыщения определяется как локальный параметр $I_S(z) = hv/\sigma\tau(z)$, где σ, τ – сечение вынужденного перехода и эффективное время безызлучательной релаксации с верхнего лазерного уровня. Он ранее был введен в рамках точечной двухуровневой модели активной среды лазера. Такой параметр в данном случае не имеет физического смысла «интенсивности насыщения». Для рассматриваемой одномерной модели пришлось обращаться непосредственно к определению параметра насыщения, как такой интенсивности, которая приводит к снижению усиления, интегрального вдоль по потоку среды, вдвое. На рис. 7,а представлена рассчитанная зависимость от величины интенсивности отношения g_0 к среднему коэффициенту насыщенного усиления g. На рис. 9 показаны зависимости эквивалентной интенсивности насыщения газа. Значения интенсивности насыщения, вычисленные по рассматриваемой модели, хорошо совпадают со значениями, найденными в [39, 40] методом пробного пучка и примерно в два-три раза меньше значений, полученных в работах [41, 42] с использованием методов калиброванных потерь и вариации длины активной среды соответственно.

Влияние процессов переноса на интенсивность насыщения

Итак, имеются расхождения между результатами расчета и экспериментальными данными: в расчетах коэффициент усиления меньше по величине и более слабо зависит от энерговклада, а интенсивность насыщения в работах, основанных на модели Ригрода [46], в несколько раз выше расчетных значений и имеют более сильную зависимость от энерговклада. В работах [47-48] была предпринята попытка объяснить эти расхождения влиянием процессов переноса, в частности, турбулентного перемешивания, не принятых во внимание в изложенной выше численной модели. В этих работах дополнительно к столкновительному каналу ухода молекул CO₂ с верхнего лазерного уровня рассматривался перенос молекул в поперечном к оси резонатора направлении. Такой подход ранее использовался для описания процессов в лазерах, скорость потока в которых имеет значительную составляющую перпендикулярно оптической оси. Применительно к случаю продольной прокачки этот дополнительный канал был предложен в [2], где для расчета интенсивности насыщения, таким образом, учитывалось конечное время пребывания возбужденной молекулы в зоне резонатора. В этом случаю конеки выс возбужденных молекул в зону пучка, с последующим выносом, приводит в расчетах, в рамках двухуровневой модели, к увеличению интенсивности насыщения активной среды и уменьшению коэффициента усиления слабого сигнала (см. напр. [3]). Однако в случае одномодового лазера с АПГ, когда используется турбулизованный поток газа вдоль направления распространения пучка, а излучение занимает почти весь объем разряда, перенос возбужденных молекул вдоль луча не приводит к уходу молекул из зоны излучения. Т.о. модель, рассмотренная в работах [47-48], объясняет экспериментально наблюдаемые значения интенсивности насыщения лишь в частном, редко встречающемся, случае организации газового потока с существенной поперечной составляющей скорости потока в ГРТ.

Процессы переноса проявляются в лазерах такого типа в основном в виде турбулентного перемешивания возбужденных молекул в неоднородном поперек потока поле излучения, насыщающего среду. Влияние диффузии на интенсивность насыщения и выходную мощность было рассмотрено в [49]. Показано, что при неоднородном заполнении пучком активной среды интенсивность насыщения и выходная мощность могут увеличиваться в $(1 + \sqrt{\tau_2/\tau_D})$ раз, где τ_D – характерное время

диффузии: $\tau_D = w_0^2 / (K \cdot D)$, где К принимает значения в диапазоне 4...6, w_0 – радиус пучка, D – коэффициент диффузии. При этом пониженные значения интенсивности насыщения в работе [39] объясняются тем, что на временах порядка

длительности импульса использовавшегося в работе пробного лазера эти процессы не успевали проявиться. Однако добиться на практике увеличения интенсивности насыщения более чем в полтора раза таким образом затруднительно [50].

Как резюме, учитывая только процессы конвективного сноса и турбулентного перемешивания, не удается объяснить расхождение между вычисленными значениями коэффициента усиления и интенсивности насыщения и наблюдаемыми в экспериментах [39, 40, 41, 42]. Поэтому необходимо было дополнительное изучение этих вопросов. Учет радиальной неоднородности усиления и температуры позволит, как будет показано ниже, объяснить отмеченные расхождения между данными экспериментов и результатами численного моделирования.

Рис. 9. Зависимость *I_s* от удельного энерговклада *W.* Давление газа: 1 – 55 гПа, 2 –70 гПа, 3 –85 гПа.

5. Исследование радиальных неоднородностей активной среды CO₂-лазера с АПГ

Влияние радиальной неоднородности параметров активной среды на выходную мощность СО2-лазера с АПГ

Задача о влиянии неоднородного насыщения активной среды при генерации собственных поперечных мод резонатора на уровень внутрирезонаторных потерь была рассмотрена в работе [51]. Было введено понятие "боковых потерь", повышающих степень насыщения активной среды на оси резонатора при том же уровне превышения усиления над пороговым значением. В [52] учитывалось радиальное распределение амплитуды гауссова пучка, распространяющегося в однородной активной среде. В [3] рассмотрено усиление гауссова пучка в линзоподобной среде с параболическим профилем усиления. Результаты этих работ были использованы нами в качестве основы рассуждений [25, 53], с учетом аксиальной симметрии задачи.

Рассмотривался случай усиления для *I*/*Is*≥I, когда радиальный профиль усредненного вдоль по лучу усиления определяется распределением плотности электронов по радиусу ГРТ, а неоднородность эквивалентной интенсивности насыщения определяется радиальным профилем температуры:

$$g(r) = \frac{g_0(r)}{1 + I(r)/I_s(r)}$$
(5.1)

здесь $g_0(r) = g_0(0) \cdot (1+0,5 \cdot \epsilon \cdot r^2)$ – радиальное распределение интегрального вдоль по потоку коэффициента усиления слабого сигнала, $I_S(r) = I_S(0) \cdot (1+0,5 \cdot \beta r^2)$ – радиальное распределение интенсивности насыщения, ϵ и β – отношения значения второй производной функции по радиусу к значению функции на оси для функций $g_0(r)$ и $I_S(r)$ соответственно. При этом учитывалось, что длина активной среды ГРТ много меньше длины Рэлея оптического резонатора, и так что поперечный размер пучка постоянным по всей длине ГРТ, $I(r) \equiv I_{0\Sigma} \exp(-2r^2/w_2)$ – суммарная интенсивность встречных пучков основной гауссовой моды резонатора. Тогда по аналогии с [46] при 0.3< *R* <1 :

$$\frac{g_0(0)}{1+I_0/I_S(0)} \cdot \left[1 + \frac{\varepsilon w^2}{4} + \left(1 + \frac{\beta w^2}{4}\right) \frac{I_0/I_S(0)}{1+I_0/I_S(0)}\right] = \gamma \frac{L_t}{L_d} + \frac{1}{N \cdot L_d} \ln(1/\sqrt{R}).$$
(5.2)

Выражение (5.2) позволяет определить выходную мощность лазера:

$$P_{out} = \frac{\pi w^2}{2} I_{out}^0 = \frac{\pi w^2}{2} I_0 \cdot \ln(1/\sqrt{R}).$$
(5.3)

Здесь учтено, что на оси гауссова пучка интенсивность в два раза больше среднего значения. В случае неоднородной среды при одном и том же превышении над пороговым усилением:

Рис. 10. Зависимость g_0^{Gauss} от удельного энерговклада *W*. Давление газа: 1 – 55 гПа, 2 – 70 гПа, 3 – 85 гПа (расчет); 1а) – 55 гПа, 1b) – 61 гПа. (эксперим. [26]).

$$g_{thres} = \gamma \frac{L_t}{L_d} + \frac{1}{N \cdot L_d} \ln(1/\sqrt{R})$$
(5.4)

уравнение (5.2) по сравнению с моделью Ригрода [46] справедливо при более высокой степени насыщения среды: в $\frac{(1+2\cdot J)^2}{(1+4\cdot J)\cdot(1+J)}$ раз, -т.н. "боковые потери" [51] (здесь $J = I/I_S$).

При **J**=0 из (5.2) следует, что коэффициент усиления меньше рассчитанного значения в $1/(1 + \varepsilon w^2/4)$ раз. При однородном заполнении разряда ε =0 и расчетный коэффициент усиления совпадет с пороговым значением. С ростом радиальной неоднородности ε <0 и экспериментальные значения коэффициента усиления окажутся меньше расчетных значений. Так, например, для распределения Бесселя коэффициента усиления по радиусу ГРТ:

$$\mathbf{E}R_t^2 \approx -2,88, \tag{5.5}$$

и при $w^2 = 0.5 R_t^2$ коэффициент усиления ниже примерно в 1,56 раза, а при более резкой форме, чем распределение Бесселя расхождение еще более значительное. Расхождение тем больше, чем шире радиус пучка. Эти соображения позволили объяснить, почему в экспериментах наблюдается более слабая зависимость коэффициента усиления от энерговклада: ведь с его ростом, как следует из результатов расчета, рис. 6, разряд все более сжимается к оси ГРТ.

На рис. 10 представлены данные расчета по усилению пробного гауссова пучка с w^2 =0,7 R_t^2 с учетом значений радиальной

неоднородности, рис. 6, так что $g_0^{Gauss} = g_0(0) \cdot \left(1 + \frac{\varepsilon w^2}{4}\right)$, где значение усиления на оси пучка $g_0(0)$ бралось из расчетов

одномерной модели, рис. 8. Там же, на рис.10, точками представлены экспериментальные данные, полученные методом вариации длины активной среды [25] при давлении 55 гПа (1а) и 61 гПа (1b). Сопоставление расчетных данных с данными эксперимента показывает важность учета радиальной неоднородности коэффициента усиления.

Для радиального профиля температуры было использовано следующее параболическое приближение, исходя из данных [35] по температурной зависимости времени жизни верхнего лазерного уровня в диапазоне температур 300...500 К:

$$\beta R_t^2 \approx -\Delta T[K]/71K$$
, ΔT – нагрев на оси ГРТ. (5.6)

Из уравнения (5.2) можно получить поправочные коэффициенты к значениям интенсивности насыщения, измеряемым методом калиброванных потерь, для сравнения с рассчитанным по формуле Ригрода без учета радиальных неоднородностей плотности тока и температуры. На рис. 11 приведены зависимости этого коэффициента ξ от превышения усиления над пороговым значением g/g_{nop} , рассчитанные для нескольких значений удельного энерговклада в разряд, в случае $w^2 = 0,7 R_t^2$.

Без учета поправочного коэффициента использование метода калиброванных потерь ведет к завышенным в несколько раз (1,2...3) значениям интенсивности насыщения по сравнению с

расчетным значением $I_{S}^{theory} = h\nu/\sigma\tau$. Этого не учли, используя модель Ригрода, в работе [41] и, по-видимому, в [42] при обработке экспериментальных данных.

На рис. 9 представлены экспериментальные данные из [54], полученные методом вариации длины активной среды при давления газа 55 гПа точки (1а) и при 61 гПа -(1b), при учете поправочного коэффициента, рис. 11. Полученные значения достаточно точно совпадают с расчетными значениями. Таким образом, учет неоднородности разряда и нагрева позволяет повысить точность использования метода калиброванных потерь.

Автор работы [55], исходя из анализа констант в уравнений кинетики, ставит под сомнение «основное условие работы электроразрядных СО₂-лазеров – эффективное охлаждение его активной среды». Авторы работы [56], опубликованной в 2004 году, измеряют параметры активной среды, выполняя обработку данных исходя из формулы Ригрода без учета радиальных неоднородностей поля температуры, что вносит методическую ошибку в измерения интенсивности насыщения. Анализ уравнения (5.2), несомненно, указывает на необходимость выравнивания поля температуры для создания условий однородности параметров активной среды

W=12,9 BT/cm³, 6. W=14,8 BT/cm³, 7. W=16,3 BT/cm³.

Радиальная неоднородность коэффициента рефракции среды СО2-лазера с АПГ

Возникновение радиальной неоднородности показателя преломления в среде мощного CO₂-лазера с АПГ связано с радиальным распределением энерговклада и с непостоянством по радиусу скорости газа в потоке, причем радиальный профиль скорости зависит от характера потока (ламинарный или турбулентный).

Вычисление радиальных оптических неоднородностей требовало знания распределения температуры по радиусу трубки, которое описывается стационарным решением уравнения теплового баланса

$$c_{p}\rho\left[v\frac{T_{out}(r)-T_{0}}{L_{t}}-\frac{\vartheta_{turb}}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\langle T\rangle(r)}{\partial r}\right)\right]=Q_{0}(r)\frac{L_{d}}{L_{t}}+\langle Q_{1}(r,z)\rangle,$$
(5.7)

где $T_{out}(r)$ – температуры в плоскости катода ГРТ ($z = L_d$). Здесь **v** – скорость газового потока, ϑ_{turb} – коэффициент температуропроводности с учетом турбулентного тепло- и массопереноса. $Q_0(r)$ – функция, описывающая джоулевое тепловыделение в разряде. Функция тепловыделения $Q_1(r,z)$ – связана с VT – релаксацией колебательно-возбужденных

$$\bar{Q} = \bar{Q}_0 + \bar{Q}_1 = (1 - \eta_e) e E v_d n_e L_d / L_t,$$
(5.8)

где η_e – электрооптический кпд лазера, $v_d = \mu_e E$ – скорость дрейфа электронов в электрическом поле положительного столба. Параметры этого уравнения, записанного в виде (4.5), определяются из уравнений заселенностей колебательных уровней молекул активной среды, (4.1)-(4.4), в условиях накачки электронами положительного столба разряда, распределение которых по радиусу можно определить, например, решая уравнение (3.2) [57, 58].

Основной интерес при рассмотрении аберраций волнового фронта в активной среде представляют усредненные по продольной координате (ось z) изменения показателя преломления $\langle \Delta n(r) \rangle$. При этом вследствие радиальной симметрии тепловыделения и скорости газа регулярные крупномасштабные оптические неоднородности имеют преимущественно форму газовой оптической

линзы. Пространственная неоднородность температуры вызывает изменение показателя преломления газовой среды согласно закону Гладстона-Дейла:

$$\frac{\frac{\partial^2 \langle n(r) \rangle}{\partial r^2}}{\frac{\partial r^2}{\partial r^2}} = -K_{GD} \frac{\rho}{T} \frac{\frac{\partial^2 \langle T(r) \rangle}{\partial r^2}}{\frac{\partial r^2}{\partial r^2}} = 0,$$
(5.9)

где К_{GD} – коэффициент Гладстона-Дейла, который оценивается по

формуле
$$K_{GD} \approx \frac{n_H - 1}{\rho_H}$$
, (5.10)

где n_H, ρ_H – показатель преломления и плотность газа при нормальных условиях. Далее, используя выражение (5.9), находится сила оптической линзы:

$$\frac{1}{F_N} = \frac{\partial^2 \langle n(r) \rangle}{\partial r^2} \Big|_{r=0} w^2 \cdot L_T \cdot N , \qquad (5.11)$$

где *N* – количество ГРТ в резонаторе.

Результаты расчета

В расчете использовались параметры CO₂-лазера с аксиальной прокачкой газа ТЛА-600, параметры ГРТ описаны выше. Рабочее давление смеси газов 1CO₂:6N₂:10He ~80 гПа, скорость потока составляла примерно 120 м/с. На рис. 12 приведена расчетная зависимость F_1 от удельного энерговклада в разряд для нескольких значений (w/R_T)². С возрастанием удельного энерговклада, как показано ранее в [25], его распределение становится более вытянутым к центру. Это ведет к возрастанию второй производной температуры, а, следовательно, согласно (5.9), (5.11) – к увеличению оптической силы тепловой газовой линзы В расчетах было принято, что только 15% энергии разряда уходит непосредственно на нагрев газа. Образующаяся в активной среде ЛАПГ термическая газовая линза является расфокусирующей. Величина ее оптической силы зависит от интенсивности лазерного излучения, т.к. в области излучения понижается нагрев газа, другими словами, она является нелинейной вследствие теплового самовоздействия в активной среде CO₂-лазера. Характер зависимости F_1 (*I*), (рис. 13), согласуется с общими свойствами эффекта теплового самовоздействия в активной среде CO₂-лазера в непрерывном режиме. Как и следовало ожидать, в наибольшей степени нелинейные свойства самообразующейся газовой термической линзы проявляются вблизи интенсивности насыщения (*I*~*I*₃), а также при уменьшении поперечного размера лазерного пучка. Влияние неоднородности индекса рефракции на дифракционные потери в резонаторе СО₂-лазера с АПГ

В устойчивом резонаторе расфокусирующие линзы приводят к расширению гауссова пучка и изменению кривизны волнового фронта выходного пучка. Возникающая таким образом дополнительная кривизна волнового фронта может корректироваться фокусирующим устройством. Более существенным оказывается влияние термической линзы на дифракционные потери излучения в резонаторе. В устойчивом резонаторе с фиксированным числом Френеля (2.1) появление рассеивающей линзы приводит к увеличению объема, занимаемой модой излучения с соответствующим увеличением ее дифракционных потерь.

Например, в лазере ТЛА-600 с 8 ГРТ в четырехпроходном резонаторе длиной 5,25 м было установлено выходное и глухое зеркало радиусом кривизны внутренних поверхностей *г* 28 м. Радиус диафрагмы был 8,5 мм. На этом лазере, методом варьирования потерь на излучение [41], были проведены измерения внутрирезонаторных потерь в рабочем диапазоне изменения энерговклада в разряд и давления рабочей смеси, как вблизи порога генерации

(путем соответствующего уменьшения числа включенных ГРТ), так и при значительном превышении над порогом генерации. Результаты измерений представлены на рис. 14.

При расчете этих потерь полагалось, что посредине каждой ГРТ расположена оптически тонкая расфокусирующая термическая газовая линза. Методом, описанным в [3], были вычислены эквивалентные параметры устойчивого резонатора с указанной последовательностью линз и характерный радиус гауссова пучка, а затем из графиков, приведенных в [59], находились дифракционные потери. Кроме этого, учитывалось, что основные суммарные потери излучения возникали на шести поворотных зеркалах и составляли около 9 % [41].

Результаты расчета дифракционных потерь в зависимости от энерговклада в разряд в режиме генерации основной гауссовой моды для параметров резонатора из данных эксперимента также представлены на рис. 14 (сплошная линия). Видно хорошее согласие результатов расчета и эксперимента. При установке в резонатор лазера другого глухого зеркала, с радиусом рассеивающей линзы кривизны *r* =12 м, рассчитанным на основе проведенных расчетов, дифракционные потери снизились до величины порядка 1 %. Результаты данных расчетов также были использованы при расчете телескопической системы для согласования пучка с апертурой адаптивного зеркала [60].

Исследование активной среды СО2-лазера с АПГ интерференционными методами

В экспериментах интерференционными методами исследовалась активная среда СО₂-лазер ТЛА-600. В резонаторе модернизированного варианта лазера было установлено восемь газоразрядных трубок (ГРТ) длиной L=18 см и радиусом R=10,5 мм. Поступление газовой смеси CO2:N2:He=1/6/10 в ГРТ осуществлялось через боковое отверстие (түрбүлизатор) диаметром 14 мм. Это формирование стабилизирующего обеспечивало характеристики разряда турбулизированного потока, скорость которого составляла v=180 м/с. Давление на входе ГРТ составляло 85 гПа.

В наших экспериментах использовался интерферометр с разделением пучка, работающий по схеме, показанной на рис. 15. По сравнению с интерферометром с опорным пучком, он в меньшей мере подвержен влиянию внешних вибрации и возмущений. Луч зондирующего He-Ne лазера с длиной волны 0.63 мкм делился плоскопараллельной пластиной. При помощи оптического клина полученные параллельные пучки разводились в двух направлениях -"рабочем" и "калибровочном". Два параллельных рабочих пучка проходили через активную турбулентную среду CO₂лазера, между ними было выбрано расстояние $\Delta l \cong 5$ мм. (Такая величина расстояния между пучками близка к размеру *I*⁰ внутреннего масштаба турбулентности потока.) Два калибровочных луча отражались от вогнутого зеркала с радиусом кривизны R, равным радиусу кривизны заднего зеркала CO₂-лазера (R=28 м). Обе пары лучей фокусировались на экран, где они интерферировали попарно между собой.

Были получены интерферограммы для разных условий: в случае покоящегося газа; при наличии потока газа, но в

отсутствие разряда; при наличии потока газа в условиях газового разряда при удельном энерговкладе от 5 до 25 Вт/см³ и давлении газа от 50 до 80 гПа.

Как показано на рис. 16 с ростом энерговклада растет расстояние между полосами при интерференции «рабочих» пучков, потому что их путь проходил через активную среду газоразрядных трубок, представляющую собой

рассеивающую линзу. Измерения показали, что при энерговкладе W=10 Вт/см³ фокусное расстояние этой составной (8 ГРТ) линзы составила 20 м, что согласуется с данными расчета (см рис. 12).

Эти интерферограммы позволяют также измерить степень снижения когерентности фронта лазерного пучка при распространении в среде лазера с АПГ. Было установлено, ЧТО в потоке видность газа интерференционных полос уменьшалась ПО сравнению со случаем покоящегося газа; видность уменьшалась ещё больше при включении разряда, и тем сильнее, чем были выше давление газа и энерговклад.

Можно полагать, что флуктуирующие во времени радиальные неоднородности плотности тока в виде токовых шнуров, имеющих диаметр меньший, чем расстояние ΔI между лучами, вызывают дополнительные фазовые сдвиги. Причиной токовых шнуров может быть неустойчивость разряда при высоких энерговкладах. При этом, как показали измерения, долговременные (порядка времени пребывания газа в разряде и дольше) флуктуации величины $\delta \varphi$ коррелируют с флуктуациями тока разряда и напряжения на разрядном промежутке. Этот эффект ухудшения оптического качества активной среды СО₂-лазера с АПГ был нами

активной среды СО₂-лазера с АП оыл нами исследован более подробно, результаты изложены в следующей главе.

Рис. 16.а) неподвижная среда б) поток газа, без электроразряда в) поток газа. разряд W=5 Вт/см³; г) поток газа. разряд W=10 Вт/см³

6. Выводы

Исследовано влияние газового разряда, турбулентности газового потока и лазерного излучения на оптические неоднородности активной среды непрерывных электроразрядных CO₂-лазеров с аксиальной прокачкой газа. Показано существенное влияние на выходные параметры как амбиполярной, обусловленной наличием электроотрицательных ионов, так и турбулентной диффузии. Показано, что в среде такого лазера формируется термическая рассеивающая газовая линза, оптическая сила которой нелинейно зависит от уровня энерговклада в разряд и может зависеть от интенсивности генерируемого излучения. Приведены результаты исследования среды лазера интерферометрическим методом.

В случае накачки в самостоятельном продольном разряде радиальная неоднородность усиления активной среды, обусловленная радиальной неоднородностью температуры и сжатием разряда к осевой области газоразрядной трубки, приводит к снижению энергетической эффективности лазера. Показана роль отрицательных ионов, образующихся в плазме разряда, на параметры СО₂-лазеров с аксиальной прокачкой газа. Приведена методика расчета генерационных характеристик СО₂-лазера этого типа на основе одномерной кинетической модели с учетом радиальной неоднородности накачки и температуры.

Литература

- 1. Алейников В.С., Бибиков В.В., Лысогоров О.С. и др. Компактный излучатель на углекислом газе на основе замкнутого цикла конвективного охлаждения рабочей смеси. Электронная промышленность, вып. 5(101)-6(102), стр. 71-75. 1981; см. также: Алейников В.С., Савилова П.И. и др. А.с. SU 795389А "Газоразрядный ОКГ непрерывного действия." МКИ: НО 1S3/22,. приоритет от 05.08.68, опубл.: Бюл. изобр. N 10, 1984.
- 2. Гойхман В.Х., Дембовецкий В.В., Завалов Ю.Н. и др. Исследование и оптимизация газоразрядных элементов СО₂-лазера с аксиальной прокачкой газа. Препринт / НИЦ ТЛ. 1988. № 45.
- 3. *Виттеман В.* СО₂-лазер. М.: Мир, 1990.
- 4. Технологические лазеры: Справочник / Под ред. Г.А. Абильсиитова. М.: Машиностроение, 1991. Т. 1.
- 5. Акишев Ю.С., Напартович А.П. Влияние газодинамической турбулентности на устойчивость разряда в потоке газа // Физика плазмы. 1978. с. 1146-1149.
- 6. Бондаренко А.В., Голубев В.С., Лебедев Ф.В. и др. О термической неустойчивости самостоятельного газового разряда // Физика плазмы. 1979.с. 417-420.
- 7. Васильев Л.А., Галушкин М.Г., Серегин А.М. и др. Нелинейные оптические неоднородности в активных средах газовых лазеров // Квантовая электроника. 1981. Т. 8, № 9. С. 1987-1989.
- 8. Авербух Б.Б., Дембовецкий В.В., Завалов Ю.Н. Режимы генерации СО2-лазера с аксиальной прокачкой газа // Изв. РАН.сер. физ. 1993. с. 195-202.
- 9. Maes L., Muys P. A 5 kW CO₂ laser with Gaussian mode structure // In.: Proc. of the 5-th Symp. Gas Flow and Chem. Lasers, Oxford, N 72. 1984. P. 21-24.
- 10. Sasnett Michael W. Kilowatt-class CO₂ lasers meet present and future industrial needs // Laser Focus / Electro-Optics. 1988. March. P. 48.
- 11. Schwarzenbach A.P., Hunziker U.W. Industrial CO₂ laser with high overall efficiency // Proc. SPIE. 1988. Vol. 1020. P. 43.
- 12. Pfeiffer W., Breining K., Wu N. et al. Scalability of RF gas discharges for high-power CO₂ lasers // In: Proc. SPIE Vol. 2206, pp.80-90, 1994.
- 13 Пат. №0215458 ЕПВ Газовый лазер (H013/03, 3/03); приоритет от 14.09.1985; заяв. Trumpf Gmbx.
- 14. Велихов Е.П., Голубев В.С., Пашкин В.С. Тлеющий разряд в потоке газа // УФН. 1982. Т. 137. С. 117.

- 15. Райзер Ю.П. Физика газового разряда. М.: Наука. 1987.
- 16. Велихов Е.П., Ковалев А.С., Рахимов А.Т. Физические явления в газоразрядной плазме. М.: Наука. 1987.
- 17. Галушкин М.Г., Голубев В.С., Завалова В.Е. и др. Расчетно-теоретическое исследование положительного столба тлеющего разряда отпаянного CO₂лазера // ТВТ. 1993. Т. 31, N 6. C. 875.
- 18. Мак-Даниель И., Мэзон Э. Подвижность и диффузия ионов в газах. М.: Мир, 1976.
- 19. Напартович А.Н., Наумов В.Г., Шашков В.М. О распаде плазмы тлеющего разряда в постоянном электрическом поле // Физика плазмы. 1975. с. 821.
- 20. Гембаржевский Г.В., Генералов Н.А., Райзер Ю.П. и др. Самостоятельный и несамостоятельный разряды в потоке газа // ТВТ. 1986. Т. 24, с. 233-238.
- 21. Дембовецкий В.В., Завалов Ю.Н., Тарасов М.Н. и др. Газоразрядный лазер. (МКИ H01S3/22) а.с. № 1575886 гос. рег. от 01.03.90; приоритет от 25.03.88; заяв. НИЦТЛ №4410137.
- 22. Galeev R.S., Fedosov A.A. Numerical modeling of a fast-axial-flow CO₂ laser with considering viscosity and ambipolar diffusion. // SPIE. 1995. Vol. 2713. P. 8.
- 23. Denes L.J., Lowke J.J. V-I characteristics of pulsed CO₂ laser discharges // Appl. Phys. Lett. 1973. Vol. 23, No 3. P. 130.
- 24. Напартович А.Н., Наумов В.Г., Шашков В.М. О распаде плазмы тлеющего разряда в постоянном электрическом поле // Физика плазмы. 1975. с. 821.
- 25. Галушкин М.Г., Голубев В.С., Дембовецкий В.В., и др. Влияние радиальной неоднородности активной среды на мощность излучения непрерывных СО₂-лазеров с быстрой аксиальной прокачкой // Квантовая электроника. 1996. Т. 23, N 8. С. 695-698.
- 26. Напартович А.П., Старостин А.Н. Механизмы неустойчивости тлеющего разряда повышенного давления / В кн.: Химия плазмы. Вып. 6 (Под ред. Б.М.Смирнова). М.: Атомиздат, 1979. С. 153-208.
- 27. Елецкий А.В., Смирнов Б.М. Сжатие положительного столба тлеющего разряда // ЖТФ. 1970. Т. 40. С. 1682.
- 28. Brunet H., Mabru M., Gastaud M. Characteristics of turbulent flow stabilized DC-discharges for CO₂ lasers. /Proceed. of VI-th Int.Symp. on Gas Flow and Chem. Lasers, Jerusalem, Sept.8-12'86//ed.S.Rosenwaks, Springer-Verlag, Berlin, 1987. P. 40.
- 29. Leys C, Toebaert D., Desoppere E. Spatially Resolved Measurement of the Electrical Power Density and Gas Flow Velocity in a Fast Axial Flow CO₂ laser // Proc 21 Int. Conf. On Phenomena on Ionesed Gases (Bochum, Germany). 1993. Vol. 2. P. 98-99.
- 30. Sazhin S., Wild P., Leys C, Toebaert D., Sazhina E., Makhlouf M. Three-dimensional modelling of processes in the fast-axial-flow CO₂ laser // J. Phys. D: Appl. Phys. 1994. τ.27. P. 464.
- 31. Sazhin S., Wild P., Leys C, Toebaeit D., Vasquez-Malebran S. Electron diffusion in the fast-axial-flow CO₂ laser. //J. Phys. D: Appl.Phys. 1994. 27. P. 107.
- 32. Toebaert D., P.Muys, Desoppere E. Spatially resolved measurement of the vibrational temperatures of the plasma in a dc-excited fast-axial-flow CO₂ laser // IEEE J. Quant. Electron. 1995. Vol. 31, N 10. P. 1774-1778.
- 33. Галеев Р.С., Киселев О.М. К задаче оптимального состава рабочей смеси технологического СО₂-лазера / В кн: Вычислительные методы в физической газовой динамике. Казань: Изд-во Казанского ун-та, 1989.
- 34. Лосев С.А. Газодинамические лазеры. М.: Наука, 1977.
- 35. Смит К., Томсон Р. Численное моделирование газовых лазеров. М.: Мир, 1981.
- 36. Гордиец Б.Ф., Осипов А.И., Шелепин Л.А. Кинетические процессы в газах и молекулярные лазеры. М.: Наука, 1980. 512 с.
- 37. Баранов Г.А., Бутаев Ю.Б., Град В.И., Зинченко А.К. Исследование усиления в самостоятельном разряде с поперечным потоком газа // Квантовая электроника. 1987. Т. 14, № 10, с.1963-1973.

- 38. Галушкин М.Г., Голубев В.С., Дембовецкий В.В. и др. Усиление и нелинейные потери в непрерывном СО₂-лазере с быстрой аксиальной прокачкой // Квантовая электроника. 1996. Т. 23, N 6. C. 544-548.
- 39 *Tsuchida E., Sato H., Kasuya K.* Transient gain phenomena and gain enhancement in FAF CO₂ laser amplifier // SPIE. 1990. Vol. 1397. P. 331.
- 40. Дембовецкий В.В., Завалов Ю.Н., Сурдутович Г.И. Гистерезис и пассивная модуляция добротности СО₂-лазера с большим усилением // Препринт. / НИЦТЛ. 1989. N 67. Шатура. 23 с. (русс./англ.).
- 41. Dembovetski V.V., Zavalov Yu.N. Industrial fast-axial flow carbon dioxide lasers in Russia, In: Kossowsky, Ed., High Power Lasers: Science and Engineering, Kluwer Academic Press, Dordrecht, p. 603-618 1996.
- 42. Freisinger B., Schafer J.H., Uhlenbusch J., Zhang Z.B. Microwave excited CO₂ lasers // Proc. SPIE. 1989. Vol. 1132. P. 22.
- 43. Baverly III R.E. Kinetic modeling of a FAF CO₂ laser // Opt. & Quant. Electron. 1982. Vol. 14. P. 25.
- 44. Atanasov A., Baeva M.G. Numerical model of fast axial-flow CW CO₂ laser // Proc. SPIE. 1988. Vol. 1031. P. 56.
- 45. Grünewald K., Giesen A., Hugel H. Theoretical investigation on CO₂ laser design // Proc. SPIE. 1992. Vol. 1810. P. 99.
- 46. Rigrod W.W. Homogeneously broadened CW laser with uniform distributed losses // IEEE J. Quant. Electron. 1978. Vol. QE-14, N 5. P. 377.
- 47. Muller S., Uhlenbusch J. Influence of turbulence and convection on the output of a high-power CO₂ laser with a fast axial flow // J.Phys.D:Appl.Phys. 1987.p. 697.
- 48. Atanasov A., Baeva M.G. Numerical model of fast axial-flow CW CO₂ laser // SPIE. 1988. Vol. 1031. P. 56.
- 49. Одинцов А.И., Спажакин В.А., Влияние диффузии на насыщение усиления в газовых активных средах // Квантовая электроника. 1982. с. 1708-1710.
- 50. Galushkin M.G., Golubev V.S., Dembovetsky V.V. et al. Influence of turbulent diffusion of excited molecules upon energy parameters of fast-axial-flow CO₂ laser // SPIE. 1995. Vol. 2713. P. 25.
- 51. Кузнецова Т.Н. О взаимодействии электромагнитных полей с активными средами // Нелинейная оптика. Тр.ФИАН. 1968. Т. 43. С. 116-160.
- 52. Casperson L.W. Source of errors // Appl. Optics. 1980. Vol. 19, N 3. P. 422-434.
- 53. Dembovetski V.V., Zavalov Yu.N., Zavalova V.Ye. Fast-axial flow CO₂ laser output characteristics and scaling parameters // SPIE. 1996. Vol. 2773. P. 125-134.
- 54. Завалов Ю.Н. Исследование генерационных характеристик электроразрядного СО₂- лазера с турбулентным продольным потоком газа // Дис. ... канд. физ.-мат. наук, Шатура, 1997.
- 55. Невдах В.В. О влиянии температуры на создание инверсии заселенностей в активных средах электроразрядных CO₂-лазеров // Квантовая электроника. 2001. Т. 31, N 6. C. 525-528.
- 56. Арам М., Солтанморали Ф., Гафори С и др. Измерение коэффициента усиления слабого сигнала и интенсивности насыщения непрерывного СО₂лазера с помощью внутрирезонаторного устройства, вносящего регулируемые потери // Квантовая электроника. 2004. Т. 35, N 4. С. 341-343.
- 57. Galushkin M.G., Golubev V.S., Zavalov Yu.N. et al. Large-Scale Optical Nonuniformities in Active Medium of Axial-Flow Industrial CO₂ Lasers / In: Digest Paper of "XI Int.Symp. on Gas Flow and Chemical Laser Conf.", Edinburgh, UK, Aug 25-30. 1996. P. 38.
- 58. Галушкин М.Г., Голубев В.С., Завалов Ю.Н. и др. Оптические неоднородности активной среды СО₂-лазеров с быстрой аксиальной прокачкой // Квантовая электроника. 1997. Т. 24, № 3. С. 223-226.
- 59. McCumber D.E. Eigenmodes of a Symmetrical Laser Resonator and Pertubation by Output-Coupling Apertures // Bell Systems Techn. J., Febr. 1965. p. 333-344.
- 60. Завалов Ю.Н., Капцов Л.Н., Кудряшов А.В. и др. Формирование заданного распределения интенсивности излучения в непрерывном технологическом СО₂-лазере // Квантовая электрон. 1999. Т. 27, № 57. С. 57-58.