
160160160160160

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

6.2.36.2.36.2.36.2.36.2.3 Radix-2 Decimation-In-Frequency FFT AlgorithmRadix-2 Decimation-In-Frequency FFT AlgorithmRadix-2 Decimation-In-Frequency FFT AlgorithmRadix-2 Decimation-In-Frequency FFT AlgorithmRadix-2 Decimation-In-Frequency FFT Algorithm
In the DIT FFT, each decimation consists of two steps. First, a DFT
equation is expressed as the sum of two DFTs, one of even samples and
one of odd samples. This equation is then divided into two equations, one
that computes the first half of the output (frequency) samples and one that
computes the second half. In the decimation-in-frequency (DIF) FFT, a
DFT equation is expressed as the sum of two calculations, one on the first
half of the samples and one on the second half of the samples. This
equation is then expressed as two equations, one that computes even
output samples and one that computes odd output samples. Decimation
in time refers to grouping the input sequence into even and odd samples,
whereas decimation in frequency refers to grouping the output
(frequency) sequence into even and odd samples. Decimation-in-
frequency can thus be visualized as repeatedly dividing the output
sequence into even and odd samples in the same way that decimation in
time divides down the input sequence (Oppenheim, 1975). The following
equations illustrate radix-2 decimation in frequency.

The DIF FFT divides an N-point DFT into two summations, shown in (11).

N–1

(11) X(k) = ∑ x(n) WN
nk

n=0

N/2–1 N–1

= ∑ x(n) WN
nk + ∑ x(n)WN

nk

n=0 n=N/2

N/2–1 N/2–1

= ∑ x(n) WN
nk + ∑ x(n+N/2)WN

(n+N/2)k

n=0 n=0

Because WN
(n+N/2)k = WN

nk x WN
(N/2)k and WN

(N/2)k = (–1)k, equation (11) can
also be expressed as

N/2–1 N/2–1

(12) X(k) = ∑ x(n) WN
nk + (–1)k ∑ x(n+N/2) WN

nk

n=0 n=0

161161161161161

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

N/2–1

= ∑ [x(n) + (–1)k x(n+N/2)] WN
nk

n=0

for k = 0 to N–1

The decimation of the output (frequency) sequence is accomplished by
dividing X(k) into two equations, one that computes even output samples
and one that computes odd output samples. For even values of X(k), k=2r.

N/2–1

(13) X(2r) = ∑ [x(n) + (–1)2r x(n+N/2)] WN
2nr

n=0

N/2–1

= ∑[x(n) + x(n+N/2)] WN/2
nr

n=0

r = 0 to N/2–1

For odd values of X(k), k=2r+1.

N/2–1

(14) X(2r+1) = ∑ [x(n) + (–1)2r+1 x(n+N/2)] WN
(2r+1)n

n=0

N/2–1

= ∑ [[x(n) – x(n+N/2)] WN
n] WN/2

nr

n=0

r = 0 to N/2–1

Note that X(2r) and X(2r+1) are the results of N/2-point DFTs performed
on the sum and difference of the first and second halves of the input
sequence. In equation (14), the difference of the two halves of the input
sequence is multiplied by a twiddle factor, WN

n. Figure 6.5, on the next
page, illustrates the first decimation of the DIF FFT, which eliminates half
(N2/2) of the DFT calculations.

162162162162162

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

X(N–2)

W
0

W
N/2–1

x(0)

x(1)

x(N/2–1)

x(N/2)

x(N/2+1)

x(N–1)

X(0)

X(2)

X(1)

X(3)

X(N–1)

W
1–1

–1

–1

N/2-Point
DFT

N/2-Point
DFT

Figure 6.5 First Decimation of DIF FFTFigure 6.5 First Decimation of DIF FFTFigure 6.5 First Decimation of DIF FFTFigure 6.5 First Decimation of DIF FFTFigure 6.5 First Decimation of DIF FFT

Each of the two N/2-point DFTs (X(2r) and X(2r+1)) are divided into two
N/4-point DFTs in the same way as the N-point DFT is divided into two
N/2-point DFTs. By the substitutions

X1(r) = X(2r) r = 0 to N/2–1

x1(n) = x(n) + x(n+N/2) n = 0 to N/2–1

the sequence of even samples in equation (13) becomes

N/2–1

(15) X1(r) = ∑ x1(n) WN/2
rk

n=0

This N/2-point sequence has the same form as the original N-point
sequence in equation (11) and can be divided in half in the same manner
to yield

N/4–1

(16) X1(r) = ∑ [x1(n) + (–1)r x1(n+N/4)] WN/2
nr

n=0

163163163163163

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

For even output samples, let r=2s.

N/4–1

(17) X1(2s) = ∑ [x1(n) + x1(n+N/4)] WN/4
sn

n=0

For odd output samples, let r=2s+1.

N/4–1

(18) X1(2s+1) = ∑ [(x1(n) – x1(n+N/4)) WN
2n] WN/4

sn

n=0

X(2r+1) is also divided into two equations, one that computes even output
samples and one that computes odd output samples, in the same way that
X(2r) is divided into X1(2s) and X1(2s+1). Thus we have four N/4-point
sequences.

If we make the substitutions

X2(s) = X1(2s)

x2(n) = x1(n) + x1(n+N/4)

equation (17) becomes

N/4–1

(19) X2(s) = ∑ x2(n) WN/4
sn

n=0

The four N/4-point sequences that result from the decimation of X(2r) and
X(2r+1) are divided to form eight N/8-point sequences in the third
decimation. This process is repeated until the division of a sequence
results in a pair of equations that together compute a two-point DFT. In
this pair, the summation variable n (see equations 17 and 18) is equal to
zero only, so no summation is performed. The two-point DFT computed
by this pair of equations is the core calculation (butterfly) for the radix-2
DIF FFT.

Figure 6.6, on the next page, shows the complete decimation for an eight-
point DIF FFT. Notice that the inputs of the DIF FFT are in sequential

164164164164164

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

order and the outputs are in scrambled order. The DIF FFT can also be
performed with inputs in bit-reversed order, resulting in outputs in
sequential order. In this case, however, the twiddle factors must be in bit-
reversed order. In this chapter, both the DIT FFT and the DIF FFT are
presented with twiddle factors in sequential order to simplify

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Stage 1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

 W
 0

 W
 0

 W
 0

 W
 0

 W
 2

 W
 0

W
0

W
2

W
0

W
1

W 2

W
3

Stage 2 Stage 3
programming.

Figure 6.6 Eight-Point DIF FFTFigure 6.6 Eight-Point DIF FFTFigure 6.6 Eight-Point DIF FFTFigure 6.6 Eight-Point DIF FFTFigure 6.6 Eight-Point DIF FFT

As in the DIT FFT, the DIF FFT butterflies are organized into groups and
stages. In the eight-point FFT, the first stage has one group of four
(N/2) butterflies. The second stage has two groups of two (N/4)
butterflies, and the last has four groups of one butterfly. In general, an N-
point DIF FFT has the characteristics summarized below.

165165165165165

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

Stage 1 Stage 2 Stage 3 Stage Log2N

Number of
Groups 1 2 4 N/2

Butterflies
per Group N/2 N/4 N/8 1

Dual-Node
Spacing N/2 N/4 N/8 1

Twiddle
Factor n, 2n, 4n, (N/2)n,
Exponents n=0 to N/2–1 n=0 to N/4–1 n=0 to N/8–1 n=0

The DIF FFT butterfly is similar to that of the DIT FFT except that the
twiddle factor multiplication occurs after rather than before the primary-
node and dual-node subtraction. The DIF butterfly is illustrated
graphically in Figure 6.7. The variables x and y represent the real and
imaginary parts, respectively, of a sample. The twiddle factor can be
divided into real and imaginary parts because WN = e–j2π/N = cos(2π/N) –
jsin(2π/N). In the program presented later in this section, the twiddle
factors are initialized in memory as cosine and –sine values (not +sine).
For this reason, the twiddle factors are shown in Figure 6.7 as C + j(–S). C

-1

Primary
Node

Dual
Node

Dual Node
Spacing

x ´ + jy ´

x ´ + jy ´x + jy

x + jy
0

1 11 1

000

W = C + j(–S)

represents cosine and –S represents –sine.

Figure 6.7 Radix-2 DIF FFT ButterflyFigure 6.7 Radix-2 DIF FFT ButterflyFigure 6.7 Radix-2 DIF FFT ButterflyFigure 6.7 Radix-2 DIF FFT ButterflyFigure 6.7 Radix-2 DIF FFT Butterfly

166166166166166

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

Equations (20) through (23) describe the DIF FFT butterfly outputs.

(20) x0´ = x0 + x1

(21) y0´ = y0 + y1

(22) x1´ = C(x0 – x1) – (–S)(y0 –y1)

(23) y1´ = (–S)(x0 – x1) + C(y0 –y1)

As in the DIT FFT, the butterfly is performed in-place; that is, the results
of each butterfly are written over the corresponding inputs. For example,
x0´ is written over x0.

6.2.46.2.46.2.46.2.46.2.4 Radix-2 Decimation-In-Frequency FFT ProgramRadix-2 Decimation-In-Frequency FFT ProgramRadix-2 Decimation-In-Frequency FFT ProgramRadix-2 Decimation-In-Frequency FFT ProgramRadix-2 Decimation-In-Frequency FFT Program
The DIF flow chart is shown in Figure 6.8. Like the DIT FFT, the DIF FFT
uses three subroutines. The first subroutine computes the FFT. The second
subroutine performs conditional block floating-point scaling at the end of
each stage (except the last). The third subroutine bit-reverses the locations
of the FFT output data to “unscramble” the data. The DIF FFT subroutine
is described in this section.The block floating-point and bit reversal
routines are described in later sections.

6.2.4.16.2.4.16.2.4.16.2.4.16.2.4.1 Main ModuleMain ModuleMain ModuleMain ModuleMain Module
The module dif_fft_main is shown in Listing 6.8. The FFT calculation is
performed in one buffer (inplacedata). In this program, the real and
imaginary input data are interleaved in the buffer. The length of
inplacedata is thus twice the number of points in the FFT and is specified
by the constant N_x_2 (N_x_2 = 2048 for a 1024-point FFT). Unlike the DIT
FFT, the DIF FFT is performed on sequentially ordered input data and
produces data in bit-reversed order; therefore, no additional buffers for
scrambling the input data are needed.

When the output data is unscrambled, it is separated into real and
imaginary values and placed in two buffers (real_results,
imaginary_results). Twiddle-factor buffers are defined and initialized as in
the DIT FFT.

The DIF FFT uses the variables groups, bflys_per_group and blk_exponent.
Because the first stage of the DIF FFT contains one group of N/2
butterflies, groups is initialized to one and bflys_per_group is initialized to
N_div_2. The node spacing (node_space) is N instead of N/2 because the
real and imaginary input data are interleaved.

START

END

Set Up For Next Stage

Set Up For Next Group

Set Up For Next Butterfly

Compute Butterfly

Initialize

More Butterflies?

More Groups?

More Stages?

BFP Scaling

YES

NO

YES

NO

YES

NO

G
ro

u
p

 L
o

o
p

S
ta

g
e

L
o

o
p

B
u

tt
er

fl
y

L
o

o
p

Bit Reverse Outputs
(unscramble)

Figure 6.8 Radix-2 DIFFigure 6.8 Radix-2 DIFFigure 6.8 Radix-2 DIFFigure 6.8 Radix-2 DIFFigure 6.8 Radix-2 DIF
FFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow ChartFFT Flow Chart

167167167167167

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

Two subroutines are called. The first performs the DIF FFT and calls the
block floating-point scaling routine. The second bit-reverses the FFT
outputs to unscramble them.

.MODULE/ABS=4 dif_fft_main;

.CONST N=1024,N_x_2=2048; {Const. for 1024 points}

.CONST N_div_2=512,log 2N=10;

.VAR/DM/RAM inplacedata[N_x_2];

.VAR/DM/RAM real_results[N];

.VAR/DM/RAM imaginary_results[N];

.VAR/PM/ROM/CIRC twid_imag[N_div_2];

.VAR/PM/ROM/CIRC twid_real[N_div_2];

.VAR/DM/RAM groups,node_space,bflys_per_group,blk_exponent;

.INIT inplacedata: <inplacedata.dat>;

.INIT twid_imag: <twid_imag.dat>;

.INIT twid_real: <twid_real.dat>;

.INIT groups: 1;

.INIT node_space: N;

.INIT bflys_per_group: N_div_2;

.INIT blk_exponent: 0;

.GLOBAL inplacedata, real_results, imaginary_results;

.GLOBAL twid_real, twid_imag;

.GLOBAL groups, bflys_per_group, node_space, blk_exponent;

.EXTERNAL unscramble, fft_start;

CALL fft_start;
CALL unscramble;
TRAP;

.ENDMOD;

Listing 6.8 Main Module, Radix-2 DIF FFTListing 6.8 Main Module, Radix-2 DIF FFTListing 6.8 Main Module, Radix-2 DIF FFTListing 6.8 Main Module, Radix-2 DIF FFTListing 6.8 Main Module, Radix-2 DIF FFT

6.2.4.26.2.4.26.2.4.26.2.4.26.2.4.2 DIF FFT ModuleDIF FFT ModuleDIF FFT ModuleDIF FFT ModuleDIF FFT Module
The conditional block floating-point DIF FFT program is described in this
section. The butterfly loop is described first, then the group and stage
loops. The complete FFT program is presented at the end of this section.

Butterfly LoopButterfly LoopButterfly LoopButterfly LoopButterfly Loop
The code segment for the DIF butterfly (with conditional block floating-

168168168168168

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

point scaling) is shown in Listing 6.9, on the next page. The primary-node
outputs x0´ and y0´ are calculated first and written over x0 and y0. Complex
subtraction for the dual-node calculation is then performed, followed by
the twiddle factor multiplication. The outputs x1´ and y1´ are written over
x1 and y1. Instructions that write butterfly results to memory are boldface.
Each butterfly output is checked for bit growth using the EXPADJ
instruction. This loop is repeated bflys_per_group times.

The input and output parameters for the butterfly loop are as follows:

Initial Conditions Final Conditions

AX0 = x0 AX0 = next x0
AY0 = x1 AY0 = next x1
AY1 = y1 AY1 = next y1
I0 --> y0 I0 --> next y0
I1 --> next x1 I1 --> x1 after next
I2 --> x1 I2 --> next x1
I4 --> C CNTR = butterfly count –1
I5 --> (-S)
M0 = –1
M1 = 1

MR=MR+MX0*MY1(RND),AY1=DM(I1,M1); {MR=(y0-y1)C+(x0-x1)(-
S),AY1=next y1}
DM(I2,M1)=MR1 ,SB=EXPADJ MR1; {y1´=(y0-y1)C+(x0-x1)(-
S),check}

{for bit growth}

Listing 6.9 Radix-2 DIF FFT Butterfly, Conditional Block Floating-PointListing 6.9 Radix-2 DIF FFT Butterfly, Conditional Block Floating-PointListing 6.9 Radix-2 DIF FFT Butterfly, Conditional Block Floating-PointListing 6.9 Radix-2 DIF FFT Butterfly, Conditional Block Floating-PointListing 6.9 Radix-2 DIF FFT Butterfly, Conditional Block Floating-Point

M5 = twiddle factor modifier
CNTR = butterfly count

AR=AX0+AY0,AX1=DM(I0,M0),MY0=PM(I4,M5); {AR=x0+x1,AX1=y0,MY0=C,I0 -->x0}
SB=EXPADJ AR; {Check for bit growth}
DM(I0,M1)=AR ,AR=AX1+AY1; {x0´=x0+x1,AR=y0+y1,I0 -->y0}
SB=EXPADJ AR; {Check for bit growth}
DM(I0,M1)=AR ,AR=AX0-AY0; {y0´=y0+y1,AR=x0-x1,I0 -->next x0}
MX0=AR,AR=AX1-AY1; {MX0=x0-x1,AR=y0-y1}
MR=MX0*MY0(SS),AX0=DM(I0,M1),MY1=PM(I5,M5);

{MR=(x0-x1)C,AX0=next x0,MY1=(-S)}
MR=MR-AR*MY1(RND),AY0=DM(I1,M1); {MR=(x0-x1)C-(y0-y1)(-S),AY0=next x1}
SB=EXPADJ MR1; {Check for bit growth}
DM(I2,M1)=MR1 ,MR=AR*MY0 (SS); {x1´=(x0-x1)C-(y0-y1)(-S),MR=(y0-y1)C}

169169169169169

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

Group LoopGroup LoopGroup LoopGroup LoopGroup Loop
The group loop code is shown in Listing 6.10. The group loop sets up the
butterfly loop by fetching initial data and initializing the butterfly loop
counter. When all the butterflies in a group have been calculated, data
pointers are updated to point to the inputs for the first butterfly of the next
group. This loop is repeated until all groups in a stage are complete.

The input and output parameters of the group loop are as follows:

Initial Conditions Final Conditions

I0 --> x0 of first butterfly in group I0 --> x0 of first butterfly in next group
I1 --> x1 of first butterfly in group I1 --> x1 of first butterfly in next group
I2 --> x1 of first butterfly in group I2 --> x1 of first butterfly in next group

MODIFY(I1,M3); {I1 ->x1 of 1st butterfly in
next group}

MODIFY(I0,M3);
group_loop: MODIFY(I0,M1); {I0 ->x0 of 1st butterfly in
next group}

Listing 6.10 Radix-2 DIF FFT Group LoopListing 6.10 Radix-2 DIF FFT Group LoopListing 6.10 Radix-2 DIF FFT Group LoopListing 6.10 Radix-2 DIF FFT Group LoopListing 6.10 Radix-2 DIF FFT Group Loop

Stage LoopStage LoopStage LoopStage LoopStage Loop
The stage loop code is shown in Listing 6.11, on the next page. This code
segment sets up and computes all groups in a stage and controls stage
characteristics, such as the number of groups in a stage. Pointers I0 and I1
are set to point to x0 and x1 of the first butterfly in the first group of the
stage. Pointer I2 also points to x1 and is used to write the dual-node
butterfly results to data memory. M3 is set to node_space–2 and is used to
modify pointers for the next group. The group counter is initialized to
groups, the number of groups in the stage. The twiddle factor modifier

CNTR = group count CNTR = group count –1
M1 = 1
M2 = node_space
M3 = node_space–2

CNTR=DM(bflys_per_group); {Initialize butterfly counter}
AX0=DM(I0,M1); {AX0=x0}
AY0=DM(I1,M1); {AY0=x1}
AY1=DM(I1,M1); {AY1=y1}
DO bfly_loop UNTIL CE;

bfly_loop: {Calculate All Butterflies in Group}

MODIFY(I2,M2); {I2 ->x1 of 1st butterfly in next group}

170170170170170

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

stored in M5 is also groups. This value is the exponent increment value for
the twiddle factors of consecutive butterflies in a group.

SB is set to –2 to detect any bit growth into the guard bits of any butterfly
output. When all the groups in a stage are computed, the bfp_adjustment
routine is called to check for bit growth and adjust the output data if
necessary. Then parameters for the next stage are updated; groups is
doubled and node_space and bflys_per_group are divided in half. The stage
loop is repeated log2N times.

The input and output parameters of the stage loop are summarized below.
Note that the parameters are passed in memory locations.

Initial Conditions Final Conditions

groups=# groups in stage groups=# groups in next stage
bflys_per_group=# butterflies/group bflys_per_group=#butterflies/group (next stage)
node_space=node spacing current stage node_space=node spacing next stage
inplacedata=stage input data inplacedata=stage output data

I0=^inplacedata; {I0 ->x0 in 1st butterfly of stage}
I1=^inplacedata;
AY0=DM(node_space);
M2=AY0; {M2=dual node spacing}
MODIFY(I1,M2); {I1 ->x1 in 1st butterfly of stage}
I2=I1;
AX0=2;
AR=AY0-AX0;
M3=AR; {M3=node_space-2}
CNTR=DM(groups); {Initialize group counter}
SB=-2; {Set minimum allowable sign bits to two}
M5=DM(groups); {M5=twiddle factor modifier}
DO group_loop UNTIL CE;

group_loop: {Calculate All Groups in Stage}

CALL bfp_adjustment; {Adjust block data for bit growth}
SI=DM(groups);
SR=LSHIFT SI BY 1 (LO);
DM(groups)=SR0; {groups=groups × 2}
SI=DM(node_space);
SR=LSHIFT SI BY -1 (LO);

DM(node_space)=SR0; {node_space=node_space ÷ 2}
SR=LSHIFT SR0 BY -1(LO);
DM(bflys_per_group)=SR0;

{bflys_per_group=bflys_per_group ÷ 2}

171171171171171

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

stage loop is entered. Instructions that write butterfly results to memory are boldface.

.MODULE dif_fft;

.CONST N=1024, N_div_2=512, log
2
N=10;

.EXTERNAL inplacedata, twid_real, twid_imag;

.EXTERNAL groups,bflys_per_group,node_space;

.EXTERNAL bfp_adjust;

.ENTRY fft_start;

fft_start: I4=^twid_real; {I4 -> C OF W 0}
L4=N_div_2;
I5=^twid_imag; {I5 -> (-S) OF W 0}
L5=N_div_2;
M0=-1;
M1=1;
CNTR=log

2
N; {Initialize stage counter}

L0=0;
L1=0;
L2=0;
DO stage_loop UNTIL CE;

I0=^inplacedata; {I0 -> x0}
I1=^inplacedata;
AY0=DM(node_space);
M2=AY0;
MODIFY(I1,M2); {I1 -> x1}
I2=I1;
AX0=2;
AR=AY0-AX0;
M3=AR; {M3=node_space-2}
CNTR=DM(groups); {Initialize group counter}
SB=-2;
M5=CNTR; {Init. twiddle factor modifier}
DO group_loop UNTIL CE;

CNTR=DM(bflys_per_group); {Init. butterfly counter}
AX0=DM(I0,M1); {AX0=x0}
AY0=DM(I1,M1); {AY0=x1}
AY1=DM(I1,M1); {AY1=y1}

Listing 6.11 Radix-2 DIF FFT Stage LoopListing 6.11 Radix-2 DIF FFT Stage LoopListing 6.11 Radix-2 DIF FFT Stage LoopListing 6.11 Radix-2 DIF FFT Stage LoopListing 6.11 Radix-2 DIF FFT Stage Loop

DIF FFT SubroutineDIF FFT SubroutineDIF FFT SubroutineDIF FFT SubroutineDIF FFT Subroutine
The complete block floating-point DIF FFT subroutine is shown in Listing
6.12. Initializations of index, modifier and length registers that retain the
same values throughout the FFT calculation are performed before the

(lisitng continues on next page)

172172172172172

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

DO bfly_loop UNTIL CE;
AR=AX0+AY0, AX1=DM(I0,M0), MY0=PM(I4,M5);

{AR=x0+x1,AX1=y0,MY0=C}
SB=EXPADJ AR; {Check for bit growth}
DM(I0,M1)=AR ,AR=AX1+AY1; {x0´=x0+x1,AR=y0+y1}
SB=EXPADJ AR; {Check for bit growth}
DM(I0,M1)=AR ,AR=AX0-AY0; {y0´=y0+y1,AR=x0-x1}
MX0=AR, AR=AX1-AY1; {MX0=x0-x1,AR=y0-y1}
MR=MX0*MY0 (SS), AX0=DM(I0,M1), MY1=PM(I5,M5);

{MR=(x0-x1)C,AX0=next x0,MY1=(-S)}
MR=MR-AR*MY1 (RND), AY0=DM(I1,M1);

{MR=(x0-x1)C-(y0-y1)(-S),AY0=next x1}
SB=EXPADJ MR1; {Check for bit growth}
DM(I2,M1)=MR1 , MR=AR*MY0 (SS);

{x1´=(x0-x1)C-(y0-y1)(-S),MR=(y0-y1)C}
MR=MR+MX0*MY1 (RND), AY1=DM(I1,M1);

{MR=(y0-y1)C+(x0-x1)(-S),AY1=next y1}
bfly_loop: DM(I2,M1)=MR1 ,SB=EXPADJ MR1;

{y1´=(y0-y1)C+(x0-x1)(-S),check bit growth}
MODIFY(I2,M2); {I2->x1 of first butterfly in next group}
MODIFY(I1,M3); {I1->x1 of first butterfly in next group}
MODIFY(I0,M3);

group_loop: MODIFY(I0,M1); {I0->x0 of first butterfly in next group}
CALL bfp_adjust; {Adjust block data for bit growth}
SI=DM(groups);
SR=LSHIFT SI BY 1 (LO);
DM(groups)=SR0; {groups=groups × 2}
SI=DM(node_space);
SR=LSHIFT SI BY -1 (LO);
DM(node_space)=SR0; {node_space=node_space ÷ 2}
SR=LSHIFT SR0 BY -1 (LO);

stage_loop: DM(bflys_per_group)=SR0;
{bflys_per_group=bflys_per_group ÷ 2}

RTS;
.ENDMOD;

Listing 6.12 Radix-2 DIF FFT Routine, Conditional Block Floating-PointListing 6.12 Radix-2 DIF FFT Routine, Conditional Block Floating-PointListing 6.12 Radix-2 DIF FFT Routine, Conditional Block Floating-PointListing 6.12 Radix-2 DIF FFT Routine, Conditional Block Floating-PointListing 6.12 Radix-2 DIF FFT Routine, Conditional Block Floating-Point

173173173173173

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

6.2.56.2.56.2.56.2.56.2.5 Bit ReversalBit ReversalBit ReversalBit ReversalBit Reversal
Bit reversal is an addressing technique used in FFT calculations to obtain
results in sequential order. Because the FFT repeatedly subdivides data
sequences, the data and/or twiddle factors may be scrambled (in bit-
reversed order). All radix-2 FFTs can be calculated with either the input
sequence or the output sequence scrambled. The twiddle factors may also
need to be scrambled, depending on the order of the input and output
sequences. In this chapter, however, input and output sequences are set up
so that twiddle factors are never scrambled. This simplifies the FFT
explanation as well as the program.

As described earlier, the input sequence to the radix-2 DIT FFT is
scrambled before the FFT is performed. Similarly, the output sequence of
the radix-2 DIF FFT is unscrambled after the FFT is performed. Scrambling
and unscrambling are both accomplished through bit reversal.

An example of bit reversal is shown below. Bit reversal operates on the
binary number that represents the position of a sample within an array of
samples. Each position is shown in decimal and binary. For example, the
position of x(4) in sequential order is four (binary 100). Note that this
position does not necessarily correspond to the location of the sample in
memory. The bit-reversed position is the transpose of the bits of the binary
number about its center; the transpose of the binary number 100 is 001. In
this example, three bits are needed to represent eight positions, so bits
zero and two are interchanged. Four bits are needed to represent 16
positions, so in a 16-point sequence, bits zero and three and bits one and
two would be interchanged. A 1024-point sequence requires the reversal
of ten bits.

Sample, Sequential Location Bit-Reversed Location Sample,
Sequential Bit-Reversed
Order decimal binary decimal binary Order

x(0) 0 000 0 000 x(0)
x(1) 1 001 4 100 x(4)
x(2) 2 010 2 010 x(2)
x(3) 3 011 6 110 x(6)
x(4) 4 100 1 001 x(1)
x(5) 5 101 5 101 x(5)
x(6) 6 110 3 011 x(3)
x(7) 7 111 7 111 x(7)

When the samples in sequential order are scrambled, x(0) remains in

174174174174174

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

location zero, x(1) moves to location four, x(2) remains in location two,
x(3) moves to location six, etc. Conversely, if samples are already
scrambled, bit reversal unscrambles them.

The ADSP-2100 has a bit-reverse capability built into its data address
generator #1 (DAG1). When a mode bit is enabled (through software), the
14-bit address generated by DAG1 is automatically bit-reversed for any
data memory read or write. The two address generators of the ADSP-2100
greatly simplify bit reversal. One address generator can be used to read
sequentially ordered data, and the other can be used to write the same
data to its bit-reversed location. Because the address generators are
independent, intermediate enabling and disabling of the bit-reverse mode
is not needed.

The base (starting) address of an array being accessed with bit-reversed
addressing must be an integer multiple of the length (N) of the transform
(i.e., base address=0, N, 2N, …).

In many cases, fewer than 14 bits must be reversed (for example, an eight-
point FFT needing only three bits reversed). Reversal of fewer than 14 bits
is accomplished by adding the correct modify value to the address pointer
after each memory access. The following example demonstrates bit
reversal of ten bits using I0 to store the address to be reversed and M0 to
store the modify value.

First, we determine the first bit-reversed address. This address is the first
14-bit address with the ten least significant bits reversed. For the DIT FFT
subroutine, the first address in the inplacereal buffer is H#0000. If we
reverse the ten least significant bits of H#0000, we still have H#0000.
Thus, we want to output H#0000 as the first bit-reversed address. To do
so, I0 must be initialized to the number that, when bit-reversed by the
ADSP-2100 (all 14 bits), is H#0000. In this case, that number is also
H#0000.

The second bit-reversed address must be H#0200 (H#0001 with ten least
significant bits reversed). We must modify I0 to the value that, when bit-
reversed (all 14 bits) is H#0200. This value is H#0010. Since I0 contains
H#0000, we must add H#0010 to it. Thus, H#0010 is loaded into M0. After
the first data memory read or write, which outputs H#0000, M0 is added
to the (non-bit-reversed) address in I0 so that I0 contains H#0010. On the
second data memory read or write, I0 is bit-reversed (14 bits) and the
resulting address is H#0200, the correct second bit-reversed address.

175175175175175

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

In general, the modify value is determined by raising two to the difference
between 14 and the number of bits to be reversed. In this ten-bit example,
the value is 2(14–10) = H#0010. Adding this value to I0 after each memory
access and reversing all 14 bits on the next memory access yields the
correct bit-reversed addresses for ten bits. The first four bit-reversed
addresses are shown below.

Sequence I0, Non-Bit-Reversed I0, Bit-Reversed

H# B# H# B#

0 0000 00 0000 0000 0000 0000 00 0000 0000 0000

1 0010 00 0000 0001 0000 0200 00 0010 0000 0000

2 0020 00 0000 0010 0000 0100 00 0001 0000 0000

3 0030 00 0000 0011 0000 0300 00 0011 0000 0000

Only the ten least significant bits (boldface) are bit-reversed. Each time a
data memory write is performed, I0 is modified by M0. Note that the
modified I0 value is not bit-reversed. Bit reversal only occurs when a data
memory read or write is executed.

Two bit reversal routines are shown in Listings 6.13 and 6.14 (scramble and
unscramble, respectively). The scramble routine places the inputs to the DIT
FFT in bit-reversed order. The unscramble routine places the output data of
the DIF FFT in sequential order. Both modules begin by initializing two
constants. The first constant (N) is the number of input points in the FFT.
The second constant (mod_value) is the modify value for the pointer which
outputs the bit-reversed addresses. Pointers to the data buffers are
initialized, and the bit-reverser is enabled for DAG1. In bit-reverse mode,
any addresses output from registers I0, I1, I2, or I3 will be bit-reversed. I0
is used in scramble, and I1 is used in unscramble.

The scramble routine assumes real input data. In this case, the imaginary
data is all zeros and can be initialized directly into the inplaceimag buffer.
The brev loop consists of two instructions. First, the sequentially ordered
data is read from the input_real buffer using I4 (from DAG2). Then, the
same data is written to the bit-reversed location in the inplacereal buffer
using I0 (from DAG1). After all the real input data has been placed in bit-
reversed order in the inplacereal buffer, the bit-reverser is disabled for the
rest of the FFT calculation.

176176176176176

66666 One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs

The unscramble routine uses two loops: one to unscramble the real FFT
output data, the other to unscramble the imaginary output data. I4 points
to the first of the scrambled real data values in the inplacedata buffer. I4 is
modified by two (in M4) after each read. Because the real and imaginary
data in inplacedata are interleaved, this ensures that only real data is read
for the first loop. I1 contains the (bit-reversed) address of the first location
in the real_results buffer (for unscrambled real data). The appropriate
modify value (stored in M1) is added to I1 upon each data memory write.
Before entering the second loop, I4 is then updated to point to the first
imaginary data in inplacedata and I1 is set to the first address (bit-reversed)
of the imag_results buffer (for sequentially ordered imaginary data).

.MODULE dit_scramble;

{ Calling Parameters
Sequentially ordered input data in inputreal
The base (starting) address of an array being accessed with
bit-reversed addressing must be an integer multiple of the
length (N) of the transform (i.e., base address=0,N,2N,…).

Return Values
Scrambled input data in inplacereal

Altered Registers
I0,I4,M0,M4,AY1

Altered Memory
inplacereal

}

.CONST N=1024,mod_value=H#0010; {Initialize constants}

.EXTERNAL inputreal, inplacereal;.CONST N=1024,mod_value=H#0010; {Initialize constants}

.ENTRY scramble;

scramble: I4=^inputreal; {I4-->sequentially ordered data}
I0=^inplacereal; {I0-->scrambled data}
M4=1;
M0=mod_value; {M0=modifier for reversing N bits}
L4=0;
L0=0;
CNTR = N;
ENA BIT_REV; {Enable bit-reversed outputs on DAG1}
DO brev UNTIL CE;

AY1=DM(I4,M4); {Read sequentially ordered data}
brev: DM(I0,M0)=AY1; {Write data in bit-reversed location}

DIS BIT_REV; {Disable bit-reverse}
RTS; {Return to calling program}

.ENDMOD;
Listing 6.13 Bit-Reverse (Scramble) RoutineListing 6.13 Bit-Reverse (Scramble) RoutineListing 6.13 Bit-Reverse (Scramble) RoutineListing 6.13 Bit-Reverse (Scramble) RoutineListing 6.13 Bit-Reverse (Scramble) Routine

177177177177177

One-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTsOne-Dimensional FFTs 66666

.MODULE dif_unscramble;

{ Calling Parameters
Real and imaginary scrambled output data in inplacedata
Output data is stored with bit-reversed addressing, starting
at address 0.

Return Values
Sequentially ordered real output data in real_results
Sequentially ordered imag. output data in imaginary_results

Altered Registers
I1,I4,M1,M4,L1,AY1,CNTR

Altered Memory
real_results, imaginary_results

}

.CONST N=1024,mod_value=H#0010; {Initialize constants}

.EXTERNAL inplacedata;

.ENTRY unscramble; {Declare entry point into module}

unscramble: I4=^inplacedata; {I4-->real part of 1st data point}
M4=2; {Modify by 2 to fetch only real data}
L1=0;
L4=0;
I1=H#4; {I1=1st real output addr, bit-reversed}
M1=mod_value; {Modifier for 10-bit reversal}
CNTR=N; {N=number of real data points}
ENA BIT_REV; {Enable bit-reverse}
DO bit_rev_real UNTIL CE;

AY1=DM(I4,M4); {Read real data}
bit_rev_real: DM(I1,M1)=AY1; {Place in sequential order}

I4=^inplacedata+1; {I4-->imag. part of 1st data point}
I1=H#C; {I1=1st imag. output addr, bit-reversed}
CNTR=N; {N=number of imaginary data points}
DO bit_rev_imag UNTIL CE;

AY1=DM(I4,M4); {Read imag. data}
bit_rev_imag: DM(I1,M1)=AY1; {Place in sequential order}

DIS BIT_REV; {Disable bit-reverse}
RTS;

.ENDMOD;

Listing 6.14 Bit-Reverse (Unscramble) RoutineListing 6.14 Bit-Reverse (Unscramble) RoutineListing 6.14 Bit-Reverse (Unscramble) RoutineListing 6.14 Bit-Reverse (Unscramble) RoutineListing 6.14 Bit-Reverse (Unscramble) Routine

	Chapter 6: One-Dimensional FFTs (Part II)
	6.2.3 Radix-2 Decimation-In-Frequency FFT Algorithm
	6.2.4 Radix-2 Decimation-In-Frequency FFT Program
	6.2.4.1 Main Module
	6.2.4.2 DIF FFT Module
	Butterfly Loop
	Group Loop
	Stage Loop
	DIF FFT Subroutine

	6.2.5 Bit Reversal

