Function Approximation

4.1 OVERVIEW

Transcendental functions such as sines and logarithms are often
approximated by polynomial expansions. The most widely used of these
expansions are the Taylor and McLaren series. They can be used to
approximate almost any function whose derivative is defined over the
specified input range. The ADSP-2100 routines in this chapter produce
function approximations from polynomial expansions, except for random
number generation, which is accomplished using the linear congruence
method.

Because the ADSP-2100 performs single precision (16-bit) fixed-point
operations, the accuracy of a polynomial expansion approximation
decreases as the order of the polynomial increases. In order to achieve
accuracy in a polynomial expansion of a limited order, we have provided
optimized coefficients for the polynomials used in the function
approximations in this chapter. Most of these coefficients were calculated
using the statistical analysis technique of regression. The coefficients are
given in the fixed-point hexadecimal format that allows the maximum
precision for the necessary magnitude.

In the interests of simplicity and accuracy, some formulas used in this
chapter are valid for a limited range of input. These routines employ the
properties of the particular function to scale or offset the input value to a
value within the valid range and thereby expand the range to
accommodate virtually any input.

4.2 SINE APPROXIMATION

The following formula approximates the sine of the input variable x:
sin(x) = 3.140625x + 0.02026367x%- 5.325196x%+ 0.5446778x* + 1.800293x>

The approximation is accurate for any value of x from 0° to 90 (the first
quadrant). However, because sin(-x) = —sin(x) and sin(x) = sin(180° — x),
you can infer the sine of any angle from the sine of an angle in the first
quadrant.

0 4

o1

4

52

Function Approximation

The routine that implements this sine approximation, accurate to within
two LSBs, is shown in Listing 4.1. This routine accepts input values in 1.15
format. The coefficients, which are initialized in data memory in 4.12
format, have been adjusted to reflect an input value scaled to the
maximum range allowed by this format. On this scale, 180° equals the
maximum positive value, H#7FFF, and —180° equals the maximum
negative value, H#8000, as shown in Figure 4.1.

H#4000 = 172

A

H#7FFF = T I ! 0

<& »
< L

H#8000 = —Tt " / H#FFFF

\4

H#C000 = —172

Figure 4.1 Scaled Angle Values

The routine shown in Listing 4.1 reads the scaled input angle from AXO.
This angle is first modified to generate the angle in the first quadrant that
will yield the same sine (or negative sine). If the input is in the second or
fourth quadrant (bit 14 of the input value is a one) the input is negated to
produce the twos complement, which represents an angle in the third or
first quadrant, respectively. The sign bit of this angle is cleared to produce
an angle in the first quadrant, and this result is stored in AR.

If the original angle is in the first quadrant, its value is unchanged. If it is
in the second quadrant, negation changes it to the third quadrant, and the
sign bit removal changes it to the first quadrant. If the original angle is in
the third quadrant, the removal of the sign bit changes it to the first
quadrant. An angle that is originally in the fourth quadrant is changed to
the first quadrant by negation.

Function Approximation

The sine of the modified angle is calculated by multiplying increasing
powers of the angle by the appropriate coefficients. The square of the
angle is computed and stored in MF while the first coefficient is fetched
from data memory. The first term of the sine approximation is stored in
the MR registers (in which the result is subsequently accumulated) in
parallel with the second coefficient fetch. In the approx loop, the next term
of the approximation is computed and added to the partial result in MR;
then a multifunction instruction fetches the next coefficient and generates
the next power of the angle at the same time.

Because the coefficients are in 4.12 format, a shift instruction is needed to
scale the result to 1.15 format. The result is then checked for overflow. If
the value in SR1 exceeds H#7FFF, the routine saturates the result at the
maximum positive value, H#7FFF, which is read from AYO0. Then the sign
of the result is restored, if necessary. If the input angle (stored in AXO0) is
negative, the result must be negated.

.MODULE Sin_Approximation;

{

Sine Approximation
Y = Sin(x)

Calling Parameters
AXO0 = x in scaled 1.15 format
M3=1
L3=0

Return Values
AR =y in 1.15 format

Altered Registers
AYO0,AF,AR,MY1,MX1,MF,MR,SR,I3

Computation Time
25 cycles

(listing continues on next page)

93

4 Function Approximation

.VAR/DM sin_coeff[5];

INIT sin_coeff : H#3240, H#0053, H#AACC, H#08B7, H#1CCE;

.ENTRY sin;

sin: I13="\sin_coeff; {Pointer to coeff. buffer}
AYO0=H#4000;
AR=AX0, AF=AX0 AND AYQ0; {Check 2nd or 4th quad.}
IF NE AR=-AX0; {If yes, negate input}
AYO=H#7FFF;
AR=AR AND AYO0; {Remove sign bit}
MY1=AR;
MF=AR*MY1 (RND), MX1=DM(I3,M3); {MF =x 2}
MR=MX1*MY1 (SS), MX1=DM(I3,M3); {MR=C X}
CNTR=3;
DO approx UNTIL CE;

MR=MR+MX1*MF (SS);

approx: MF=AR*MF (RND), MX1=DM(I3,M3);
MR=MR+MX1*MF (SS);
SR=ASHIFT MR1 BY 3 (HI);
SR=SR OR LSHIFT MRO BY 3 (LO); {Convert to 1.15 format}
AR=PASS SR1;
IF LT AR=PASS AYO; {Saturate if needed}
AF=PASS AX0;
IF LT AR=-AR; {Negate output if needed}
RTS;

.ENDMOD;

Listing 4.1 Sine Approximation

4.3 ARCTANGENT APPROXIMATION

The following polynomial expansion computes the arctangent of the

variable x, where x < 1:

arctan(x) = 0.318253x + 0.003314x> — 0.130908x°+ 0.068542x* — 0.009159x°

If x = 1, the following formula can be used to derive the arctangent:

arctan(x) = 0.5 — arctan(1/x)

The reciprocal of x when x 2 1 is a valid input for the polynomial
expansion. The arctangent approximated by these equations is scaled to a

range that corresponds to +90° to —-90°.

o4

Function Approximation

The subroutine shown in Listing 4.2 computes the arctangent of a 32-bit
value to within two LSBs. It reads the input in 16.16 format from MRO
(LSW) and MR1 (MSW). The absolute value of the input is calculated and
written back to the MR registers. In the section beginning at the posi label,
the fractional part of the input number (MRO) is shifted one bit to the right
to put it in 1.15 format.

If the integer part of the input (in MR1) is zero, the arctangent
approximation can be calculated using the input value (in AR) in the
polynomial expansion directly, and execution jumps to the noinv label. If
the MR1 value is not zero, the input is greater than one, and the reciprocal
of the input value must be calculated. The value is normalized, and a one
in 16.0 format is normalized with the same SE value. Dividing the
normalized input value into the shifted one generates the reciprocal of the
input value in 1.15 format; this value is written to the AR register.

The input value in AR is used in the polynomial expansion calculation
beginning at the noinv label. The square of the input value is calculated
while the first coefficient is fetched from data memory. The first term of
the approximation is calculated while the second coefficient is fetched
from data memory. In the approx loop, which is executed three times, the
next term of the approximation is calculated and added to the partial
result in MR in parallel with the fetch of the next coefficient. Then the next
power of the input value is calculated and stored in MF. After the loop
execution completes, one more instruction is needed to calculate the last
term of the approximation and complete the result in MR.

If the input value was less than one, the calculation is complete. If the
input was greater than one, (integer part greater than zero), the result
must be subtracted from 0.5. The subroutine checks the integer part of the
original input, which is in AY1, and if it is not zero, the result is subtracted
from 0.5 (H#4000 in 1.15 format, stored in AY0). The last step determines
the sign of the result; if the input was negative (determined by the sign of
the integer value in AX1), the result is negative; otherwise, the result is
positive.

The result in AR is in 1.15 format. It is scaled to a range in which 180° is
represented by the maximum positive value (H#7FFF) and —180° is
represented by the maximum negative value (H#8000). This
approximation yields angles scaled to the range from 90" to —-90°
(represented by 0.5 to —0.5), as shown in Figure 4.1.

95

4 Function Approximation

.MODULE Arctan_Approximation;

{

Arctangent Approximation
y = Arctan(x)

Calling Parameters

MR1 = Integer part of x
MRO = Fractional part of x

M3=1
L3=0

Return Values

AR = Arctan(x) in 1.15 scaled format

(-0.5 for -90 , 0.5 for 90

Altered Registers

)

AX0,AX1,AY0,AY1,AR,AF,MY0O,MY1,MX1,MF,MR,SR,SI

Computation Time

58 cycles (maximum)

}
.VAR/DM/RAM atn_coeff[5];

INIT atn_coeff : H#28BD, H#006D, H#EF3E, H#08C6, H#FED4;

.ENTRY arctan;

arctan: 13 = *atn_coeff;
AYO0=0;
AX1=MR1;
AR=PASS MR1;
IF GE JUMP posi;
AR=-MRO;
MRO=AR;
AR=AY0-MR1+C-1;
MR1=AR;

posi: SR=LSHIFT MRO BY -1 (LO);

AR=SRO;
AY1=MR1;
AF=PASS MR1;

IF EQ JUMP noinv;
SR=EXP MR1 (HI):

SR=NORM MR1 (Hl);
SR=SR OR NORM MRO (LO);

AX0=SR1;
SI=H#0001;
SR=NORM SI (HI);
AY1=SR1;
AY0=SRO;

96

{Point to coefficients}

{Check for positive input}
{Make negative number positive}

{Produce 1.15 value in SR0}

{If input < 1, no need to invert}
{Invert input}

Function Approximation 4

DIVS AY1,AX0;
DIVQ AXO0; DIVQ AX0; DIVQ AXO0;
DIVQ AXO0; DIVQ AXO0; DIVQ AXO0;
DIVQ AXO0; DIVQ AX0; DIVQ AXO0;
DIVQ AXO0; DIVQ AX0; DIVQ AXO0;
DIVQ AXO0; DIVQ AXO0; DIVQ AXO0;
AR=AYO0;
noinv: MYO0=AR;
MF=AR*MYO0 (RND), MY1=DM(I3,M3);
MR=AR*MY1 (SS), MX1=DM(I3,M3);
CNTR=3;
DO approx UNTIL CE;
MR=MR+MX1*MF (SS), MX1=DM(I3,M3);
approx: MF=AR*MF (RND);
MR=MR+MX1*MF (SS);
AR=MR1;
AYO0=H#4000;
AF=PASS AY1,;
IF NE AR=AY0-MR1;
AF=PASS AX1,;
IF LT AR=-AR;
RTS;
.ENDMOD;

Listing 4.2 Arctangent Approximation

4.4 SQUARE ROOT APPROXIMATION

The following equation approximates the square root of the input value X,
where 0.52x2>1:

sqrt(x) = 1.454895x — 1.34491x2 + 1.106812x° — 0.536499x*
+0.1121216x°+ 0.2075806

To determine the square root of an input value outside the range from 0.5
to 1, you must scale the value to a number within the range. After
computing the square root of the scaled number, you multiply the result
by the square root of the scaling value to produce the square root of the
original number. The program shown in this section performs all
necessary scaling.

The exponent detector of the shifter in the ADSP-2100 can be used to
calculate the necessary scaling value. It determines the amount of left
shifting needed to remove redundant sign bits of the input value, if any
exist, and stores a number that represents the shift amount in the SE

o7

4

o8

Function Approximation

register. Because the format of the input number is 16.16, a left shift of 15
bits (register SE = —15) indicates that the input number is already between
0.5 and 1; no scaling is needed, so the scaling value s is one. If the number
is shifted left more than 15 bits (register SE < -15), the input number must
be multiplied by a scaling value that is greater than one. If the number is
shifted left fewer than 15 bits (register SE > -15), the scaling value must be
less than one.

The value in SE is the negative of the power of two necessary to shift the
value; therefore, the scaling value s is equal to 2555, The square root is
calculated as follows:

X=vY
Z=V(sY)=VsVY
X=Z+s

The square root of s is found as follows:

g — DSE+15

Vs = \/(28E+15) — (1 - (1 - (\/ZSE+15))) — (1 - \/2)—(SE+15)
Incorporating the value of Vs into the equation for X yields:
X =2Z+((1+V2)6E9)

The value (1 + V2)519, ig calculated by storing the reciprocal of V2 as a
1.15 constant and multiplying this constant by itself SE+15 times,
producing a result in 1.15 format. This result is the value of Vs if SE+15 is
negative. If SE+15 is positive, the value of Vs is the reciprocal of the result,
which is found by dividing the result into 1 (in 9.23 format) to produce a
value in 9.7 format.

Listing 4.3 shows the ADSP-2100 routine to approximate the square root
of x, where 0 < x < 32768. The first part of the routine scales the input
number and computes the square root of the scaled number. The constant
term of the polynomial is stored as the constant base, which is loaded into
MR to be added to the other terms as they are computed in the approx
loop.

If the scaling value Vs is one (SE+15 = 0), the result is shifted into 8.8
unsigned format and returned; otherwise, Vs must be computed, beginning
at the label scale.

Function Approximation

The constant sqrt2, which is equal to 1 + V2, is loaded into MR1 and MY1.
The AR register is loaded with the absolute value of SE+15. If this value is
one, then MR contains the value of Vs or its reciprocal; if not, the compute
loop computes the correct power of 1 + V2.

The section that begins at the pwr_ok label checks the sign of SE+15. If it is
negative, MR contains the correct value of Vs. This value is multiplied by
the square root approximation of the scaled input, which was stored in
MYO. The product is shifted right six bits to put it in 8.8 unsigned format
and returned. If SE+15 is positive, the reciprocal of the value in MR is
calculated to yield the correct value of Vs. The product of Vs and the
square root approximation in MYO0 is calculated and added to H#2000 in
MRO to round the low order bits. This result is shifted right two bits to
form an unsigned result in 8.8 format.

.MODULE Square_root;

{

Square Root
y= Vx

Calling Parameters
MR1 = MSW of x (16.0 portion)
MRO = LSW of x (0.16 portion)
M3=1
L3=0

Return Values
SR1 =y in 8.8 UNSIGNED format

Altered Registers
AX0,AY0,AY1,AR,AF,MY0,MY1,MX0,MF,MR,SE,SR,I3

Computation Time
75 cycles (maximum)

}
.CONST base=H#0DA49, sqrt2=H#5A82;

.VAR/DM sqrt_coeff[5];
INIT sqrt_coeff : H#5D1D, H#AQED, H#46D6, H#DDAA, H#072D;

.ENTRY sqrt;

(listing continues on next page)

99

4 Function Approximation

sqrt: 13="sqrt_coeff;
SE=EXP MR1 (HI);
SE=EXP MRO (LO);
AXO0=SE, SR=NORM MR1 (HI);
SR=SR OR NORM MRO (LO);
MYO0=SR1, AR=PASS SR1;
IF EQ RTS;
MR=0;
MR1=base;
MF=AR*MYO0 (RND), MX0=DM(I3,M3);
MR=MR+MX0*MYO0 (SS), MX0=DM(I3,M3);
CNTR=4;
DO approx UNTIL CE;
MR=MR+MX0*MF (SS), MX0=DM(I3,M3);
MF=AR*MF (RND);
AY0=15;
MYO0=MR1, AR=AX0+AY0;
IF NE JUMP scale;
SR=ASHIFT MR1 BY -6 (HI);

RTS;
MR=0;
MR1=sqrt2;
MY1=MR1, AR=ABS AR;
AYO0=AR;
AR=AY0-1;
IF EQ JUMP pwr_ok;
CNTR=AR;
DO compute UNTIL CE;
compute: MR=MR1*MY1 (RND);
pwr_ok: IF NEG JUMP frac;
AY1=H#0080;
AY0=0;
DIVS AY1, MR1;
DIVQ MR1; DIVQ MR1; DIVQ MR1;
DIVQ MR1; DIVQ MR1; DIVQ MR1;
DIVQ MR1; DIVQ MR1; DIVQ MR1;
DIVQ MR1; DIVQ MR1; DIVQ MR1;
DIVQ MR1; DIVQ MR1; DIVQ MR1;
MX0=AYO0;
MR=0;
MRO=H#2000;
MR=MR+MX0*MYO0 (US);
SR=ASHIFT MR1 BY 2 (HI);
SR=SR OR LSHIFT MRO BY 2 (LO);
RTS;

approx:

scale:

frac. MR=MR1*MYO (RND);
SR=ASHIFT MR1 BY -6 (HI);
RTS;

.ENDMOD;

60

{Pointer to coeff. buffer}

{Check for redundant bits}

{Remove redundant bits}

{Load constant value}
{MF =x 2
{MR =base + C X}

{SE + 15 = 07}
{No, compute Vs}

{Load1 +V2}

{Compute (1 +V2)(SE+15)}

{Load a 1 in 9.23 format}
{Compute reciprocal of MR}

Listing 4.3 Square Root Approximation

Function Approximation 4

4.5 LOGARITHM APPROXIMATION

The common logarithm (base ten) of any number x between one and two
can be approximated using the following equation:

2log, (x) = 0.8678284(x—1) — 0.4255677(x—1)* + 0.2481384(x-1)?
—0.1155701(x-1)*+ 0.0272522(x~-1)°

The natural logarithm (base ¢) of any number x between one and two can
be approximated using the following equation:

In (x) = 0.9991150(x-1) — 0.4899597(x-1)* + 0.2856751(x~1)?
-0.1330566(x-1)* + 0.03137207(x-1)

To calculate the logarithm of a number greater than two or less than one
using these formulas, you must scale the value to a number within the
valid input range. The exponent detector of the shifter in the ADSP-2100
can be used to scale the input number. It determines the amount of left
shifting needed to remove redundant sign bits of the input value, if any
exist, and stores a number that represents the shift amount in the SE
register. Because the format of the input number is 16.16, a left shift of 14
bits indicates that the input number is already between one and two; no
scaling is needed. If the shift is more than 14 bits, the input must be scaled
by a value greater than one. If the shift is fewer than 14 bits, the input
must be scaled by a value less than one. The exponent will shift the
number into the range 0.5 < x < 1, so the number must be shifted to the
left one bit more to place it in the range 1 < x < 2.

The logarithm of the scaled input must be adjusted to produce the
logarithm of the original unscaled input. The adjustment is determined as
follows:

Y =log(X)

Z =log(sX)

log(sX) =log(s) + log(X)
Y =Z-1og(s)

Therefore, the logarithm of the unscaled input is equal to the logarithm of
the scaled input less the logarithm of the scaling factor s. Computation of
log(s) is simplified by the fact that s is a power of two.

g — DSE+14

log(s) = log(25¥+1%) = (SE+14)log(2)

61

4 Function Approximation

62

Computation of the log, and In_ can be accomplished using a single
routine initialized with one of two sets of coefficients (for either log, or

In). The routine shown in Listing 4.4 has two entry points: In, to compute
the natural log, and log, to compute the common log. The entry point sets
I3 to the start of the appropriate coefficient buffer and MY1 to either In(2)
or log, (2), as appropriate. This routine yields results accurate to within
two LSBs.

At the compute label, the input number is adjusted to the range from 0.5 to
1 by the exponent detector. Because the negative of the value in SE is used
by the NORM command, the value in SE is decremented by one, so that
the number is normalized to the range from one to two in unsigned 1.15
format.

The value of SE+14 is stored in AR. After the input number is normalized,
In(2) or log, (2) (stored in MY1) is multiplied by SE+14 in AR. The value in
AR is in 16.0 format and the value in MY1 is in either 1.15 format
(common log) or 2.14 format (natural log). The product is stored in MR
and shifted left 16 bits to match the format of the terms to be accumulated
in the MR register during the approximation.

In the natural log computation, In(2) is in 2.14 format. When it is
multiplied by SE+14, a 25.15 formatted number is produced. Shifting this
value left 16 bits yields a number in MR in 9.31 format. Each term of the
approximation is produced in 1.31 format and added to the MR value. The
final result in MR is shifted left 12 bits (right four bits) to place it in 5.11
format in SR1.

.MODULE Logarithms;

{
Logarithm Approximations
y=log ,,(x)
y=In" (%)

Calling Parameters
MR1 = Integer Portion of x in 16.0 twos complement
MRO = Fractional Portion of x in 0.16 unsigned
M3=1
L3=0

Return Values
SR1 =Y (4.12 format for log; 5.11 format for In)

Function Approximation

Altered Registers

AX0,AY0,AR,MY1,MX1,MF,MR,SE,SR,I3

Computation Time

}

.CONST

33 cycles (maximum)

log_2=H#2688,In_2=H#2C5D;

.VAR/DM In_coeffs[5];
.VAR/DM log_coeffs[5];

ANIT
ANIT

.ENTRY

In:

log:

log,In;

MY1=In_2;

13="In_coeffs;
JUMP compute;

I13="log_coeffs;

MY1l=log_2;

compute:SE=EXP MR1 (HI);

approx:

SE=EXP MRO (LO);

AYO=SE;

AR=AYO0-1,;

AX0=14;

SE=AR, AR=AX0+AY0;

SR=NORM MRL1 (HI);

SR=SR OR NORM MRO (LO);

MR=AR*MY1 (SS);

MY1=MR1;

MR1=MRO;

MR2=MY1;

MRO=0;

AYO0=H#8000;

AR=SR1-AY0;

MY1=AR;

MF=AR*MY1 (RND), MX1=DM(I3,M3);

MR=MR+MX1*MY1 (SS), MX1=DM(I3,M3);

CNTR=3;

DO approx UNTIL CE;
MR=MR+MX1*MF (SS);

MF=AR*MF (RND), MX1=DM(I3,M3);

MR=MR+MX1*MF (RND);

SR=ASHIFT MR2 BY 12 (HI);

SR=SR OR LSHIFT MR1 BY 12 (LO);

RTS;

.ENDMOD;

Listing 4.4 Logarithm Approximation

In_coeffs : H#7FE3, H#C149, H#2491, H#EEFS, H#0404;
log_coeffs : H#6F15, H#C987, H#1FC3, H#F135, H#037D;

{Natural log start here}

{Common log start here}

{Check for redundant bits}

{Remove redundant bits}

{(SE+14) x log(2)}
{Shift left 16 bits}

(MF=x 7
{(MR=C

{Shift to correct format}

63

64

Function Approximation

4.6 UNIFORM RANDOM NUMBER GENERATION

Although the generation of a random number is not, strictly speaking, a
function, it is a useful operation for many applications. One such
application is in high-speed modems, in which it can be used as a training
signal for the adaptive equalizer (see Chapter 13). The means for
generating random numbers on a digital computer, of course, is by the
computation of a function that approximates the random number. Many
of such functions have been proposed (Knuth, 1969). The implementation
presented here is based on the linear congruence method, which uses the
following equation.

x(n+1) = (ax(n) + ¢)mod m

The initial value of x, x(0), is called the seed value and is generally not
important, because with a good choice of 2 and c all m values are
generated before the output sequence repeats. The random number
sequence produced by the above equation is thus uniform in the sense
that the output is uniformly distributed between 0 and m-1. Of course,
different seed values should be used at different times if different
sequences are desired. By choosing the modulus m=2%, we ensure a long
sequence and have a convenient modulus for the ADSP-2100. The values
of a and ¢ that are used in the following program (a=1664525 and ¢=32767)
were chosen according to the rules in Knuth, 1969.

Listing 4.5 (on the next page) shows the ADSP-2100 routine used to
compute random numbers based on the linear congruence method. The
first number produced by this routine is the initial seed value in SR1. Note
that, although only the most significant 16 bits of the 32-bit x value are
used as random numbers in this routine, any or all of the bits can be used.
However, as stated in Knuth, 1969, when using a value of m equal to the
word size of the machine, the least significant bits of x(n) are much less
random than the most significant bits. Thus, one should always use the b
most significant bits when only a b-bit random number is desired.

The routine requires 10N+4 cycles to execute, where N is the number of
random numbers desired. For example, computing 2!° (65,536) random
numbers using an 8 MHz ADSP-2100 takes 81.9 milliseconds. Computing
all m=2* numbers in the sequence requires almost one and a half hours.

Function Approximation 4

.MODULE urand_sub;

{

Linear Congruence Uniform Random Number Generator

Calling Parameters
10 —> Output buffer L0O=0
MO=1
SR1 = MSW of seed value
SRO = LSW of seed value
CNTR = desired number of random numbers

Return Values
Desired number of random numbers in output buffer
SR1 = MSW of updated seed value
SRO = LSW of updated seed value

Altered Registers
MYO,MY1,MR,SI,SR

Computation Time
10 x N + 4 cycles

}
.ENTRY urand;

urand: MY1=25; {Upper half of a}
MY0=26125; {Lower half of a}
DO randloop UNTIL CE;
DM(10,M0)=SR1, MR=SR0*MY1(UU); {a(hi) x x(lo)}
MR=MR+SR1*MYO(UU); {a(hi) xx(lo) + a(lo) x x(hi)}
SI=MR1;
MR1=MRO;
MR2=SI;
MRO=H#FFFE; {c=32767, left-shifted by 1}
MR=MR+SR0*MYO0(UU); {(above) + a(lo) x X(lo) + ¢}
SR=ASHIFT MR2 BY 15 (HI);
SR=SR OR LSHIFT MR1 BY -1 (HI); {right-shift by 1}
randloop: SR=SR OR LSHIFT MRO BY -1 (LO);
RTS;
.ENDMOD;

Listing 4.5 Random Number Generator

65

4 Function Approximation

4.7 REFERENCES

Burrington, R.S. 1973. Handbook of Mathematical Tables and Formulas. Fifth
Edition. New York: McGraw-Hill Book Company.

Knuth, D. E. 1969. The Art of Computer Programming: Volume 2 |

Seminumerical Algorithms. Second Edition. Reading, MA: Addison-Wesley
Publishing Company.

66

	Chapter 4: Function Approximation (Part IV)
	4.1 Overview
	4.2 Sine Approximation
	4.3 Arctangent Approximation
	4.4 Square Root Approximation
	4.5 Logarithm Approximation
	4.6 Uniform Random Number Generation
	4.7 References

