
Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency
CodingCodingCodingCodingCoding

1414141414

441441441441441

14.114.114.114.114.1 INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
DTMF is the generic name for pushbutton telephone signaling equivalent
to the Bell System’s TouchTone®. Dual-Tone Multi-Frequency (DTMF)
signaling is quickly replacing dial-pulse signaling in telephone networks
worldwide. In addition to telephone call signaling, DTMF is becoming
popular in interactive control applications, such as telephone banking or
electronic mail systems, in which the user can select options from a menu
by sending DTMF signals from a telephone.

To generate (encode) a DTMF signal, the ADSP-2100 adds together two
sinusoids, each created by software. For DTMF decoding, the ADSP-2100
looks for the presence of two sinusoids in the frequency domain using
modified Goertzel algorithms. This chapter shows how to generate and
decode DTMF signals in both single channel and multi-channel
environments. Realizable hardware is briefly mentioned.

DTMF signals are interfaced to the analog world via codec (coder/
decoder) chips or linear analog-to-digital (A/D) converters and digital-to-
analog (D/A) converters. Codec chips contain all the necessary A/D,
D/A, sampling and filtering circuitry for a bidirectional analog/digital
interface. These codecs with on-chip filtering are sometimes called codec/
filter combo chips, or combo chips for short. They are referred to as codecs
in this chapter.

The codec channel used in this example is bandlimited to pass only
frequencies between 200Hz and 3400Hz. The codec also incorporates
companding (audio compressing/expanding) circuitry for either of the
two companding standards (A-law and µ-255 law). These two standards
are explained in Chapter 11, Pulse Code Modulation. Companding is the
process of logarithmically compressing a signal at the source and
expanding it at the destination to maintain a high end-to-end dynamic
range while reducing the dynamic range requirement within the
communication channel.

In the example of DTMF signal generation shown in this chapter, the
ADSP-2100 reads DTMF digits stored in data memory in a relocatable

1414141414

 442 442 442 442 442

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

look-up list. Alternatively, a DTMF keypad could be used for digit entry.
In either case, the resultant DTMF tones are generated mathematically and
added together. The values are logarithmically compressed and passed to
the codec chip for conversion to analog signals. Multi-channel DTMF
signal generation is performed by simply time-multiplexing the processor
among the channels.

On the receiving end, the ADSP-2100 reads the logarithmically
compressed, digital data from the codec’s 8-bit parallel data bus,
logarithmically expands it to its 16-bit linear format, performs a Goertzel
algorithm — a fast DFT (discrete Fourier transform) calculation — for
each tone to detect, then passes the results through several tests to verify
whether a valid DTMF digit was received. The result is coded and written
to a memory-mapped I/O port. Multi-channel DTMF decoding is also
performed by time-multiplexing the channels.

14.214.214.214.214.2 ADVANTAGES OF DIGITAL IMPLEMENTATIONADVANTAGES OF DIGITAL IMPLEMENTATIONADVANTAGES OF DIGITAL IMPLEMENTATIONADVANTAGES OF DIGITAL IMPLEMENTATIONADVANTAGES OF DIGITAL IMPLEMENTATION
Several chips are available which employ analog circuitry to generate and
decode DTMF signals for a single channel. This function can be digitally
implemented using the ADSP-2100. The advantages of a digital system
include better accuracy, precision, stability, versatility, and
reprogrammability as well as lower chip count, and thereby reduced
board-space requirements.

Table 14.1 compares the tone accuracy expected of a DTMF tone dialer
chip with the accuracy of tones generated by the ADSP-2100. Note that a
tone dialer chip is an application-specific device with preprogrammed
frequencies for use on a single channel, whereas the ADSP-2100 is a
general purpose microprocessor which can be programmed to generate
any frequency for many separate channels. When using the ADSP-2100,
the frequency values can be specified to within 16 bits of resolution,
implying an accuracy of 0.003%.

By simply changing the frequency values, the ADSP-2100 tone generator
can be fine-tuned or reprogrammed for other tone standards, such as
CCITT 2-of-6 Multi-Frequency (MF), call progress tones, US Air Force
412L, and US Army TA-341/PT. Since the numbers stored in data memory
do not change in value over time or temperature, the precision and
stability of a digital solution surpasses any analog equivalent. DTMF
encoding and decoding can be written as a subfunction of a larger
program, eliminating the need for separate components and specialized
interface circuitry.

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

443443443443443

DTMF Standard Typical frequency from Frequency from
Frequency hybrid tone-dialer chip ADSP-2100 program

using 3.579545MHz crystal

% deviation % deviation

697.0Hz 699.1Hz +0.31% 697.0Hz ±0.003%
770.0Hz 766.2Hz –0.49% 770.0Hz ±0.003%
852.0Hz 847.4Hz –0.54% 852.0Hz ±0.003%
941.0Hz 948.0Hz +0.74% 941.0Hz ±0.003%

1209.0Hz 1215.9Hz +0.57% 1209.0Hz ±0.003%
1336.0Hz 1331.7Hz –0.32% 1336.0Hz ±0.003%
1477.0Hz 1471.9Hz –0.35% 1477.0Hz ±0.003%
1633.0Hz 1645.0Hz +0.73% 1633.0Hz ±0.003%

Table 14.1 Precision of Analog and Digital Tone GenerationTable 14.1 Precision of Analog and Digital Tone GenerationTable 14.1 Precision of Analog and Digital Tone GenerationTable 14.1 Precision of Analog and Digital Tone GenerationTable 14.1 Precision of Analog and Digital Tone Generation

14.314.314.314.314.3 DTMF STANDARDSDTMF STANDARDSDTMF STANDARDSDTMF STANDARDSDTMF STANDARDS
The DTMF tone signaling standard is also known as TouchTone or MFPB
(Multi-Frequency, Push Button). TouchTone was developed by Bell Labs
for use by AT&T in the American telephone network as an in-band
signaling system to supersede the dial-pulse signaling standard. Each
administration has defined its own DTMF specifications. They are all very
similar to the CCITT standard, varying by small amounts in the
guardbands (tolerances) allowed in frequency, power, twist (power
difference between the two tones) and talk-off (speech immunity). The
CCITT standard appears as Recommendations Q.23 and Q.24 in Section
4.3 of the CCITT Red Book, Volume VI, Fascicle VI.1. Other standards
(AT&T, CEPT, etc.) are listed in References, at the end of this chapter.

Two tones are used to generate a DTMF digit. One tone is chosen out of
four row tones, and the other is chosen out of four column tones. Two of
eight tones can be combined so as to generate sixteen different DTMF
digits. Of the sixteen keys shown in Figure 14.1, on the next page, twelve
are the familiar keys of a TouchTone keypad, and four (column 4) are
reserved for future uses.

A 90-minute audio-cassette tape to test DTMF decoders is available from
Mitel Semiconductor (part number CM7291). There also exists a standard
describing requirements for systems which test DTMF systems. This
standard is available from the IEEE as ANSI/IEEE Std. 752-1986.

1414141414

 444 444 444 444 444

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3

Row 4

1209Hz 1336Hz 1477Hz 1633Hz

697Hz

770Hz

852Hz

941Hz

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

DTMF digit = Row Tone + Column Tone

Figure 14.1 DTMF DigitsFigure 14.1 DTMF DigitsFigure 14.1 DTMF DigitsFigure 14.1 DTMF DigitsFigure 14.1 DTMF Digits

14.414.414.414.414.4 DTMF DIGIT GENERATION PROGRAMDTMF DIGIT GENERATION PROGRAMDTMF DIGIT GENERATION PROGRAMDTMF DIGIT GENERATION PROGRAMDTMF DIGIT GENERATION PROGRAM
Generation of DTMF digits is relatively straightforward. Digital samples
of two sine waves are generated (mathematically or by look-up tables),
scaled and then added together. The sum is logarithmically compressed
and sent to the codec for conversion into the analog domain.

A sine look-up table is not used in this example because the sine can be
computed quickly without using the large amount of data memory a look-
up table would require. The sine computation routine is efficient, using
only five data memory locations and executing in 25 instruction cycles.
The routine used to compute the sine is from Chapter 4, Function
Approximation. This routine evaluates the sine function to 16 significant
bits using a fifth-order Taylor polynomial expansion. The sine
computation routine is called from the tone generation program as an
external routine; refer to that chapter for details on the sine computation
routine.

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

445445445445445

To build a sine wave, the tone generation program utilizes two values.
One, called sum, keeps track of where the current sample is along the time
axis, and the other, called advance, increments that value for the next
sample. Since the DTMF tone generation program generates two tones,
there are two different sum values and two different frequency values
(stored in the variables hertz). The value sum is stored in data memory in a
variable called sum. Sum is modified every time a new sample is
calculated. The value advance is calculated from a data memory variable
called hertz. Hertz is a constant for a given tone frequency. The ADSP-2100
calculates the advance value from a stored hertz variable instead of storing
advance as the data memory variable because this allows you to read the
frequency being generated in Hz directly from the data memory display
(in decimal mode) of the ADSP-2100 Simulator or Emulator.

The sum values are dm(sin1) and dm(sin2) in Listing 14.1 (see Program
Listings at the end of this chapter). The advance values are derived from the
variables dm(hertz1) and dm(hertz2) in Listing 14.1. For readable source
code and easy debugging, Listing 14.1 uses two data memory variables
dm(sin1) and dm(sin2) to store the value returned from each call to the
sine subroutine rather than storing the value in a register. These variables
are then added together, resulting in a DTMF output signal value.

The sampling frequency of telephone systems is 8kHz. Therefore, the
ADSP-2100 must output samples every 125µs. An 8kHz TTL square wave
is applied to an interrupt (IRQ3 in this case) pin of the ADSP-2100. The
ADSP-2100 is initialized for edge-sensitive interrupts with interrupt-
nesting mode disabled (see Listing 14.1, two lines immediately preceding
the label wait_int near the top of executable code). The sampling
frequency, in conjunction with the advance value, determines the
frequency of the sine wave generated.

Circular movement around a unit circle is analogous to linear motion
along the time axis of a sine wave, one revolution of the circle
corresponding to one period of the wave. The range of inputs to the sine
function approximation subroutine is –π to 0 to +π radians. This range
maps to the 16-bit hexadecimal numbers H#8000 to H#FFFF and H#0000
to H#7FFF (see Figure 14.2 on the next page and Table 14.2 following it).
All of the 16-bit numbers are equally spaced around the unit circle,
dividing it into 65536 parts. The advance value is added to the sum value
during each interrupt. To generate a 4kHz sine wave, the advance value
would have to be 32768, equivalent to π radians, or a jump halfway
around the unit circle. Because Nyquist theory dictates that 4kHz is the
highest frequency that can be represented in an 8kHz sampling-frequency

1414141414

 446 446 446 446 446

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

system, this is the maximum advance value that can be used. For a sine
wave frequency of less than 4kHz, the advance value would be
proportionally less (see Figure 14.3).

Figure 14.2 Sine Routine Input Angle MappingFigure 14.2 Sine Routine Input Angle MappingFigure 14.2 Sine Routine Input Angle MappingFigure 14.2 Sine Routine Input Angle MappingFigure 14.2 Sine Routine Input Angle Mapping

advance value = 65536 sampling frequency
tone frequency desired

advance

h#0000 = 0

h#FFFF = ~0

h#4000 = π/2

h#C000 = –π/2

h#7FFF = ~π

h#8000 = –π

sum + advance

sum

t = t + Tsampling0

t = t0

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

447447447447447

Input to Sine Equivalent Input
Approximation Angle
Routine (radians/degrees)

H#0000 0 0
H#2000 π/4 45
H#4000 π/2 90
H#6000 3π/4 135
H#7FFF ~π ~180

H#8000 –π –180
H#A000 –3π/4 –135
H#C000 –π/2 –90
H#E000 –π/4 –45
H#FFFF ~0 ~0

Table 14.2 Sine Routine Input Angle MappingTable 14.2 Sine Routine Input Angle MappingTable 14.2 Sine Routine Input Angle MappingTable 14.2 Sine Routine Input Angle MappingTable 14.2 Sine Routine Input Angle Mapping

Figure 14.3 Sine Wave Frequency DeterminationFigure 14.3 Sine Wave Frequency DeterminationFigure 14.3 Sine Wave Frequency DeterminationFigure 14.3 Sine Wave Frequency DeterminationFigure 14.3 Sine Wave Frequency Determination

advance
π radians

< π/2

advance
< π radians

125µs

4kHz sine wave

t

t

sin t

sin t

< 4kHz sine wave

3π/2

< 3π/2

π/2

+1

–1

+1

–1

1414141414

 448 448 448 448 448

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

For examples of some tones and their advance values, see Table 14.3. Since
telephone applications require an 8kHz sampling frequency, the formula
above can be reduced to:

advance required = 8.192 (tone frequency desired in Hz)

Advance Value Tone Frequency (Hz)

H#0000 0
H#2000 (1/8)fsampling

H#4000 (1/4)fsampling

H#6000 (3/8)fsampling

H#7FFF ~(1/2)fsampling

Table 14.3 Some Advance Values and FrequenciesTable 14.3 Some Advance Values and FrequenciesTable 14.3 Some Advance Values and FrequenciesTable 14.3 Some Advance Values and FrequenciesTable 14.3 Some Advance Values and Frequencies

The program shown in Listing 14.1 reads the frequency out of data
memory at dm(hertz1) and dm(hertz2). The multiplication by 8.192 is
implemented as a multiplication by 8, by 0.512, and then by 2. This
approach ensures optimal precision. The multiplications by 8 and by 2 are
done in the shifter, and the multiplication by 0.512 is done in the
multiplier. The multiplications by 8 and by 2 do not cause any loss of
precision. For the multiplication by 0.512, the value 0.512 is represented in
1.15 format, i.e., the full 15 bits of fractional precision. A multiplication by
8.192, which must be represented in at least 5.11 format, would leave only
11 bits of fractional precision. Although not explicitly shown here, this
proves to be too little precision for high frequency tones.

After the advance value has been added to the sum value, the result is
written back to the sum location in data memory, overwriting the past
contents. The result is also passed in register AX0 to the sine function
approximation subroutine. That subroutine calculates the sine in 25 cycles
and returns the result in the AR register. The sine result is then scaled by
downshifting (right arithmetic shift) by the amount specified in dm(scale).
This scaling is to avoid overflow when adding the two sine values
together later on. The scale amount is stored as a variable in data memory
at dm(scale) so you can adjust the DTMF amplitude. The scaled result is
stored in data memory in either the dm(sin1) or dm(sin2) locations,
depending which sine is being evaluated.

When both sines have been calculated, the scaled sine values are recalled
out of data memory and added together. That 16-bit, linear result is then

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

449449449449449

passed via the AR register to the µ-255 law, logarithmic compression
subroutine (called u_compress in Listing 14.1; this routine is listed in
Chapter 11, Pulse Code Modulation), and the compressed result is finally
written to the memory-mapped codec chip.

14.4.114.4.114.4.114.4.114.4.1 Digit EntryDigit EntryDigit EntryDigit EntryDigit Entry
There are two methods for entering DTMF digits into the ADSP-2100
program for conversion into DTMF signals. One method is to memory-
map a keypad so that when you press a key, the resultant DTMF digit is
generated. The other method is to have the ADSP-2100 read a data
memory location which contains the DTMF digit in the four LSBs of the
16-bit number (see Figure 14.4). The program shown in Listing 14.1 uses
the latter of the two methods. In either case, the row and column
frequencies are determined by a look-up table. The keypad method is
described in theory, then the data memory method is described, referring
to Listing 14.1.

Figure 14.4 Tone Look-Up TableFigure 14.4 Tone Look-Up TableFigure 14.4 Tone Look-Up TableFigure 14.4 Tone Look-Up TableFigure 14.4 Tone Look-Up Table

941

1336

697

1209

697

1336

697

1477

770

1209

941

1477

•
•
•

'0' row

'0' column

'1' row

'1' column

'2' row

'2' column

'3' row

'3' column

'4' row

'4' column

'F' (#) row

'F' (#) column

•
•
•

^digits

(points to base address of look-up table)

^digits+8

^digits+8+1

= DTMF digit '4' row tone

= DTMF digit '4' column tone

example:

row tone = DM(^digits+offset)

column tone = DM(^digits+offset+1)

1414141414

 450 450 450 450 450

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

14.4.1.114.4.1.114.4.1.114.4.1.114.4.1.1 Key Pad EntryKey Pad EntryKey Pad EntryKey Pad EntryKey Pad Entry
For DTMF digit entry using the keypad, a 74C922 16-key encoder chip is
used in conjunction with a 16-key SPST switch matrix and address
decoding circuitry. An example of this circuit is shown in Figure 14.5.

3 2 1 0

7 6 5 4

89AB

CDEF

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

16-key pad

DTMF overlay

74C922

16-key encoder

D
C
B
A

4 columns

4 rows

KBM

OSC

DA

OE
address
decode DMA bus

DMRD

DMACK+5V

DMD3-0

DMD15-4
n/c

(maps to)

ADSP-2100

IRQ38kHz square wave

Figure 14.5 Keypad Entry CircuitFigure 14.5 Keypad Entry CircuitFigure 14.5 Keypad Entry CircuitFigure 14.5 Keypad Entry CircuitFigure 14.5 Keypad Entry Circuit

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

451451451451451

The CMOS key encoder provides all the necessary logic to fully encode an
array of SPST switches. The keyboard scan is implemented by an external
capacitor. An internal debounce circuit also needs a external capacitor as
shown in Figure 14.5. The Data Available (DA) output goes high when a
valid keyboard entry has been made. The Data Available output returns
low when the entered key is released, even if another key is pressed. The
Data Available will return high to indicate acceptance of the new key after
a normal debounce period. To interrupt the ADSP-2100 when a key has
been pressed, invert the Data Available signal and tie it directly to one of
the four independent hardware interrupt pins. An internal register in the
keypad encoder chip remembers the last key pressed even after the key is
released.

Because a DTMF keypad maps to a hexadecimal keypad as shown in
Figure 14.5 and Table 14.4, a program using the keypad for digit entry
would use a row and column tone look-up list which is similar to that
used in Listing 14.1, but its contents would be slightly different. The
operation of the tone look-up list is the same as in Listing 14.1, although
the values stored in data memory within the look-up list reflect the
remapping of the keypad.

DTMF Key 74C922 Output DTMF Key 74C922 Output
0 xxxE 8 xxxA
1 xxx3 9 xxx9
2 xxx2 A xxx0
3 xxx1 B xxx4
4 xxx7 C xxx8
5 xxx6 D xxxC
6 xxx5 * xxxF
7 xxxB # xxxD

Table 14.4 DTMF to Keypad Encoder ConversionTable 14.4 DTMF to Keypad Encoder ConversionTable 14.4 DTMF to Keypad Encoder ConversionTable 14.4 DTMF to Keypad Encoder ConversionTable 14.4 DTMF to Keypad Encoder Conversion

14.4.1.214.4.1.214.4.1.214.4.1.214.4.1.2 Data Memory ListData Memory ListData Memory ListData Memory ListData Memory List
For DTMF digit entry by reading the digit in data memory (as in Listing
14.1), a row and column tone look-up list is implemented. The DTMF
digits are stored in the four LSBs of the 16-bit data word. All DTMF digits
are mapped to their hexadecimal numerical equivalent. The * digit is
assigned to the hexadecimal number H#E, and the # digit is assigned to
the hexadecimal number H#F. Table 14.5 on the next page shows this
mapping. The DTMF digits are stored in such a way that you can see the
DTMF sequence being dialed directly out of data memory using the
ADSP-2100 Simulator or Emulator in the hexadecimal data memory
display mode.

1414141414

 452 452 452 452 452

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

When a DTMF digit is read from data memory, the twelve upper MSBs
are first masked out. Then the numerical value of the DTMF digit (0, 1,...,
15 decimal) is multiplied by 2 (yielding 0, 2,..., 30 decimal) because each
entry within the look-up table is two 16-bit words long. One word holds
the row frequency, and the other word holds the column frequency. This
offset value is then added to the base address of the beginning of the look-
up table. The resultant address is used to read the row frequency and
postincremented by one. The incremented address is used to read the
column frequency.

DTMF Digit Base Address Offset Value
0 0
1 2
2 4
3 6
4 8
5 10
6 12
7 14
8 16
9 18
A 20
B 22
C 24
D 26

* (E) 28
(F) 30

Table 14.5 Look-Up Table Offset ValuesTable 14.5 Look-Up Table Offset ValuesTable 14.5 Look-Up Table Offset ValuesTable 14.5 Look-Up Table Offset ValuesTable 14.5 Look-Up Table Offset Values

For example, referring to Listing 14.1 at the label nextdigit and Figure 14.4,
the DTMF digit is read out of data memory and stored in register AX0 by
the instruction AX0=DM(I0,M0). For this example, assume the value in
AX0 is H#0004. Control flow is passed to the instruction labeled newdigit.
The twelve MSBs are set to zero, and the result is multiplied by 2 in the
barrel shifter yielding H#0008. AY0 is set to the base address (^digits) of
the tone look-up table. The base address is added to the offset and placed
in the I1 register. I1 now holds the value ^digits+8, M0 was previously set
to 1, and L1 to 0. The instruction AX0=DM(I1,M0) reads the row
frequency (770Hz) from the look-up table and stores it in the variable
hertz1 used by the sinewave generation code. I1 is automatically
postmodified by M0 (1), and the next instruction AX0=DM(I1,M0) reads
the column frequency (1209Hz) and stores that in the variable hertz2 used

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

453453453453453

by the sinewave generation code. When the sinewave generation code is
executed (at the label maketones), a signal of 770Hz + 1209Hz (DTMF digit
4) is generated.

14.4.214.4.214.4.214.4.214.4.2 Dialing DemonstrationDialing DemonstrationDialing DemonstrationDialing DemonstrationDialing Demonstration
The program listed in Listing 14.1 is a DTMF dialing demonstration
program. DTMF digits are read sequentially out of a linear buffer. The
variable sign_dura_ms (signal duration in milliseconds) sets the length of
time that a DTMF digit is generated. The variable interdigit_ms (interdigit
time in milliseconds) sets the length of the silent period following a DTMF
digit. When a new digit is started, the variable time_on is set to 8 x
sign_dura_ms and the variable time_off is set to 8 x interdigit_ms. Time_on
and time_off are counters which the program decrements during interrupts
to count the passing of time. Because the ADSP-2100 is interrupted at an
8kHz rate, the amount of time between interrupts is 1/8 millisecond
(125µs). By taking the time in milliseconds and multiplying that numerical
value by 8, the number of interrupts to count results.

The DTMF digit dialing list stored in data memory starting at location
^dial_list can contain values other than DTMF digits. It can also contain
control words. Refer to the comment immediately following the variable
declarations at the top of the source code in Listing 14.1. If a value is
encountered in the dialing list which has any bits set in the four MSBs, the
dialing stops. This value is used as a delimiter to terminate the dialing list.
If a value is encountered in which the four bits 15-12 are zeros, but any of
the bits 11-8 are set, the dialing restarts at the top of the dialing list. If a
value is encountered in which all eight bits 15-8 are zeros, but any of the
bits 7-4 are set, then a quiet space of length sign_dura_ms plus interdigit_ms
is generated. Finally, if all twelve bits 15-4 are zeros, then the four LSBs
represent a valid DTMF digit to generate.

A software state machine has been implemented in the program of Listing
14.1. It is partly controlled by IRQ2, which in this example is wired to a
debounced switch. The state machine has three states. Pushing the IRQ2
pushbutton moves the state machine into the next state. The current state
of the machine is stored in data memory variable state. Figure 14.6, on the
next page, shows the demonstration program’s state machine. The
program starts in state 0. In this state, no digits are generated. Pushing the
IRQ2 pushbutton moves the machine into state 1, in which a continuous
dial tone (350Hz + 400Hz) is generated. The state machine moves to state 2
when the IRQ2 pushbutton is pushed again. In state 2, the DTMF dialing
list is sequentially read and DTMF digits generated. The state machine
stays in state 2 until IRQ2 is pushed again or a “stop” control word is read
out of the dialing list, in which case the machine jumps back to state 0.

1414141414

 454 454 454 454 454

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

Figure 14.6 Dialing Demonstration Program State MachineFigure 14.6 Dialing Demonstration Program State MachineFigure 14.6 Dialing Demonstration Program State MachineFigure 14.6 Dialing Demonstration Program State MachineFigure 14.6 Dialing Demonstration Program State Machine

A flowchart of the operation of this demonstration program is shown in
Figure 14.7. The data memory variables row0, ..., row3, col0, ..., col3 in
Listing 14.1 are initialized with their appropriate frequencies. These
variables are not used by the program at all, but are included as a handy
reference so you can look up the frequencies using the data memory
display of the ADSP-2100 Simulator or Emulator without having to refer
back to any literature.

STATE 1

STATE 2

STATE 0

start

output: silence

push IRQ2 button

output: continuous
dial tone

output: DTMF tones
in DM list

push IRQ2 button

push IRQ2 button

"stop" control word
 in list

or

anything but a
"stop" control word

 in list

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

455455455455455
Figure 14.7 Tone Generation Block DiagramFigure 14.7 Tone Generation Block DiagramFigure 14.7 Tone Generation Block DiagramFigure 14.7 Tone Generation Block DiagramFigure 14.7 Tone Generation Block Diagram

eight kHz
(IRQ3 service routine)

what is current
 STATE?

STATE = 0STATE = 1

HERTZ1 = 350
HERTZ2 = 400

TIME_ON
expired?

decrement
TIME_ON

TIME_OFF
expired?

decrement
TIME_OFF

yes

no

no

yes

quiet

output 0 to D/A converter
compress to µ-255 law
output result to CODEC

maketones

convert HERTZ1 to 'advance1'
SUM1 = SUM1 + 'advance1'
sin(SUM1)
scale & store in SIN1

convert HERTZ2 to 'advance2'
SUM2 = SUM2 + 'advance2'
sin(SUM2)
scale & store in SIN2

add SIN1 + SIN2
output result to D/A converter
compress to µ-255 law
output result to CODEC

reset

initialize sine input angle, tone
duration and silence down-counters

read next dial list entry

stop coderestart codequiet codeDTMF code

STATE = 0I0 index reg. = ^DIAL_LIST

TIME_ON = 0
TIME_OFF =
8 x (SIGN_DURA_MS
+ INTERDIGIT_MS)

look-up row and column freq. from table
using four LSBs of dial list entry as offset
set HERTZ1 = row freq.
set HETRZ2 = column freq.

start

initialize software state machine,
sine input angle value,
tone duration and silence down-counters
set up edge-sensitive IRQ2 and IRQ3
enable IRQ2 and IRQ3
set pointer to top of dial list

setup

self-jump loop (wait for interrupt)

wait_int

next_state
(IRQ2 service routine)

IRQ2IRQ3

increment software state machine,
sine input angle value,
tone duration and silence down-counters
set pointer to top of dial list

STATE = 2

1414141414

 456 456 456 456 456

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

14.4.314.4.314.4.314.4.314.4.3 Multi-Channel GenerationMulti-Channel GenerationMulti-Channel GenerationMulti-Channel GenerationMulti-Channel Generation
A single ADSP-2100 can generate simultaneous DTMF signals for many
channels in real time. The multi-channel program uses the same method
as the single channel version, but each channel has its own scratchpad
variables and memory-mapped I/O ports. The channels are computed
sequentially in time every time an interrupt occurs. See Figure 14.8 and

CH 5
CH 4
CH 3
CH 2
CH 1

Data Memory
RAM

CODEC
en CH 6data in

analog out

CODEC
en CH 5data in

analog out

CODEC
en CH 4data in

analog out

CODEC
en CH 3data in

analog out

CODEC
en CH 2data in

analog out

CODEC
en CH 1data in

analog out

CH 6

enabcd

o
o
o
o
o
o
o
o
o
o
o
o

enables

address
decoder

wait
state

generator
PAL

DMA

DMA

DMWR

DMWR

DMRD

DMRD

o

o

DMD

DMA

DMRD

DMWR

DMACK

PMD

PMA

PMRD

PMS

Program
Memory

OE

CS

Data

Adr

IRQ3

8 kHz

CS

Data Adr OE WE

ADSP-
2100

•

•

•

•

•

•

WAIT

CH 6KEYPAD

Figure 14.8 Six-Channel SchematicFigure 14.8 Six-Channel SchematicFigure 14.8 Six-Channel SchematicFigure 14.8 Six-Channel SchematicFigure 14.8 Six-Channel Schematic

keypad

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

457457457457457

CH
1

CH
2

CH
N• • •

CH
1

CH
2

CH
N• • •

CH
1

CH
2

CH
N• • •

CH
1

CH
2

CH
N• • •

0

t

t
sample

t
channel

1/fs 2/fs 3/fs 4/fs

= 500µs= 375µs= 250µs= 125µssampling at 8kHz

t
sample

t
channel

= time to calculate and output a sample within a channel

= time between interrupts (sampling period)

total number of channels possible, N = TRUNCATE (
t
sample

t
channel

)

Figure 14.9.

Figure 14.9 Maximum Number of Channels (Encoding)Figure 14.9 Maximum Number of Channels (Encoding)Figure 14.9 Maximum Number of Channels (Encoding)Figure 14.9 Maximum Number of Channels (Encoding)Figure 14.9 Maximum Number of Channels (Encoding)

14.514.514.514.514.5 DECODING DTMF SIGNALSDECODING DTMF SIGNALSDECODING DTMF SIGNALSDECODING DTMF SIGNALSDECODING DTMF SIGNALS
Decoding a DTMF signal involves extracting the two tones in the signal
and determining from their values the intended DTMF digit. Tone
detection is often done in analog circuits by detecting and counting zero-
crossings of the input signal. In digital circuits, tone detection is easier to
accomplish by mathematically transforming the input time-domain signal
into its frequency-domain equivalent by means of the Fourier transform.

14.5.114.5.114.5.114.5.114.5.1 DFTs and FFTsDFTs and FFTsDFTs and FFTsDFTs and FFTsDFTs and FFTs
The discrete Fourier transform (DFT) or fast Fourier transform (FFT) can
be used to transform discrete time-domain signals into their discrete
frequency-domain components. The FFT (described in Chapter 7, Fast
Fourier Transforms) efficiently calculates all possible frequency points in
the DFT (e.g., a 256-point FFT computes all 256 frequency points). On the
other hand, the DFT can be computed directly to yield only some of the

1414141414

 458 458 458 458 458

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

points, for example, only the 20th, 25th, and 30th frequency points out of
the possible 256 frequency points. Typically, if more than log2N of N
points are desired, it is quicker to compute all the N points using an FFT
and discard the unwanted points. If only a few points are needed, the DFT
is faster to compute than the FFT. The DFT is faster for finding only eight
tones in the full telephone-channel bandwidth.

The definition of an N-point DFT is as follows:
A single frequency point of the N points is found by computing the DFT

for only one k index within the range 0 ≤ k ≤ N–1. For example, if k=15:
14.5.214.5.214.5.214.5.214.5.2 Goertzel AlgorithmGoertzel AlgorithmGoertzel AlgorithmGoertzel AlgorithmGoertzel Algorithm
The Goertzel algorithm evaluates the DFT with a savings of computation
and time. To compute a DFT directly, many complex coefficients are
required. For an N-point DFT, N2 complex coefficients are needed. Even
for just a single frequency in a N-point DFT, the DFT must calculate (or
look up) N complex coefficients. The Goertzel algorithm needs only two
coefficients for every frequency: one real coefficient and one complex
coefficient.

The Goertzel algorithm computes a complex, frequency-domain result just
as a DFT does, but the Goertzel algorithm can be modified algebraically so
that the result is the square of the magnitude of the frequency component
(a real value). This modification removes the phase information, which is
irrelevant in the tone detection application. The advantage of this
modification is that it allows the algorithm to detect a tone using only one,
real coefficient.

Not only is the number of coefficients reduced, but the Goertzel algorithm
can process each sample as it arrives. There is no need to buffer N samples
before computing the N-point DFT, nor do any bit-reversing or
windowing. As shown in Figure 14.10, the Goertzel algorithm can be
though of as a second-order IIR filter.

X(15) = ∑
n=0

N–1

x(n)W N
15n where k = 15 and W N

15n
= e

–j(2π/N)15n

X(k) = ∑
n=0

N–1

x(n)W N
nk where k = 0, 1, ... , N–1 and W N

nk
= e

–j(2π/N)nk

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

459459459459459

feedforwardfeedback

X(k)

=
N

2π
k –W

N
k = –e

z –1
coef

coef
–j2πk/N

2cos

–W
N
k

 y (N)kx(n)

–1
z –1

k

=

n = 0, 1, ..., N–1 n = N

k

Figure 14.10 Goertzel AlgorithmFigure 14.10 Goertzel AlgorithmFigure 14.10 Goertzel AlgorithmFigure 14.10 Goertzel AlgorithmFigure 14.10 Goertzel Algorithm

The Goertzel algorithm can be used to compute a DFT; however, its
implementation has much in common with filters. A DFT or FFT
computes a buffer of N output data items from a buffer of N input data
items. The transform is accomplished by first filling an input buffer with
data, then computing the transform of those N samples, yielding N
results. By contrast, an IIR or FIR filter computes a new output result with
each occurrence of a new input sample. The second-order recursive
computation of the DFT by means of the Goertzel algorithm as shown in
Figure 14.10 computes a new yk(n) output for every new input sample
x(n). The DFT result, X(k), is equivalent to yk(n) when n=N, i.e.,
X(k)=yk(N). Since any other value of yk(n), in which n≠N, does not
contribute to the end result X(k), there is no need to compute yk(n) until
n=N. This implies that the Goertzel algorithm is functionally equivalent to
a second-order IIR filter, except that the one output result of the filter is
generated only after N input samples have occurred.

Computation of the Goertzel algorithm can be divided into two phases.
The first phase involves computing the feedback legs in Figure 14.10 as
depicted in Figure 14.11 on the next page. The second phase evaluates
X(k) by computing the feedforward leg in Figure 14.10 as shown in Figure
14.12, also on the next page.

1414141414

 460 460 460 460 460

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

=
N

2π
k

z –1
coef

coef 2cos

x(n)

–1
z –1

k

n = 0, 1, ..., N–1

k

Qn

Qn–1

Figure 14.11 Feedback PhaseFigure 14.11 Feedback PhaseFigure 14.11 Feedback PhaseFigure 14.11 Feedback PhaseFigure 14.11 Feedback Phase

X(k)

–W
N
k = –e –j2πk/N

 y (N)k =

n = N

Qn

Qn–1

QN–1

QN–2

=

=

Figure 14.12 Feedforward PhaseFigure 14.12 Feedforward PhaseFigure 14.12 Feedforward PhaseFigure 14.12 Feedforward PhaseFigure 14.12 Feedforward Phase

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

461461461461461

y k(N) = Qk(N–1) – WN
k
 Qk(N–2) = X(k)

14.5.2.114.5.2.114.5.2.114.5.2.114.5.2.1 Feedback PhaseFeedback PhaseFeedback PhaseFeedback PhaseFeedback Phase
The feedback phase occurs for N input samples (counted as n=0, 1,..., N–
1). During this phase, two intermediate values Q(n) and Q(n–1) are stored
in data memory. Their values are evaluated as follows:

Qk(n) = coefk x Qk(n–1) – Qk(n–2) + x(n)

where:

coefk = 2 cos(2πk/N)
Qk(–1) = 0
Qk(–2) = 0
n = 0, 1, 2, ..., N–1
Qk(n–1) and Qk(n–2) are the two feedback storage elements for
frequency point k and x(n) is the current input sample value

Upon each new sample x(n), Q(n–1) and Q(n–2) are read out of data
memory and used to evaluate a new Q(n). This new Q(n) is stored where
the old Q(n) was. That old Q(n) value is put where the old Q(n–1) was.
This action updates Q(n–1) and Q(n–2) for every sample.

14.5.2.214.5.2.214.5.2.214.5.2.214.5.2.2 Feedforward PhaseFeedforward PhaseFeedforward PhaseFeedforward PhaseFeedforward Phase
The feedforward phase occurs once after the feedback phase has been
performed for N input samples. The feedforward phase generates an
output sample. During computation of the feedforward phase, no new
input is used, i.e., new inputs are ignored. As shown in Figure 14.12, the
complex value X(k), equivalent to the same X(k) calculated by a DFT, is
computed using the two intermediate values Q(n) and Q(n–1) from the
feedback phase calculations. At this time, those two intermediate values

are Q(N–1) and Q(N–2) since n=N–1. X(k) is calculated as follows:
As stated previously, tone detection does not require phase information,
and through some algebraic manipulation, the Goertzel algorithm can be
modified to output only the squares of the magnitudes of X(k)
(magnitudes squared). This implementation not only saves time needed to
compute the magnitude squared from a complex result, but also
eliminates the need to do any complex arithmetic. The modified Goertzel
algorithm is exactly the same as the Goertzel algorithm during the

1414141414

 462 462 462 462 462

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

feedback phase, but the feedforward phase is simplified. The magnitude
squared of the complex result is expanded in terms of the values available
at the end of the feedback iterations. The complex coefficient thereby
becomes unnecessary, and the only coefficient needed is conveniently the
same as the real coefficient previously used in the feedback phase. The

formula for the magnitude squared is derived as follows:

y k(N)
2

 = X(k)
2

y k(N)
2

 = A
2
 + B

2
 - AB coefk where coef k = 2 cos N

2π
k

= A
2
 - AB (2cos ø) + B

2

= A
2
 - 2AB cos ø + B

2
(cos

2
ø + sin

2
ø)

= A
2
 - 2AB cos ø + B

2
cos

2
ø + B

2
sin

2
ø

= (A - B cos ø)
2
 + (B sin ø)

2

y k(N)
2

 = (Real Part)
2
 + (Imag. Part)

2

= A - B cos ø + j B sin ø

= A - B [cos ø - j sin ø]

= A - B
-j ø

= A - B e
-j N

2π
k

= A - B WN
k

y k(N) = Qk(N-1) - WN
k
 Qk(N-2)

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

463463463463463

The DTMF decoder calculates magnitudes squared of all eight
fundamental tones as well as the magnitude squared of each
fundamental’s second harmonic. This information is used in one of the
validation tests to determine if tones received make up a valid DTMF
digit. Specifically, it will be used to give the DTMF decoder the ability to
discriminate between pure DTMF sinusoids and speech. Speech
waveforms may also contain sinusoids similar to DTMF digits, but speech
also has energy in higher-order harmonics, typically the second harmonic.
This test is described later.

The modified Goertzel algorithms (one for each k value) have the ability
to detect tones using less computation time and fewer stored coefficients
than an equivalent DFT would require. For each frequency to detect, the
modified Goertzel algorithms need only one real coefficient. This
coefficient is used both in the feedback and feedforward phases.

14.5.2.314.5.2.314.5.2.314.5.2.314.5.2.3 Choosing N and kChoosing N and kChoosing N and kChoosing N and kChoosing N and k
Determining the coefficient’s value for a given tone frequency involves a
trade off between accuracy and detection time. These parameters are
dependent on the value chosen for N. If N is very large, resolution in the
frequency domain is very good, but the length of time between output
samples increases, because the feedback phase of Goertzel algorithm is
executed N times (once on each input sample) before the feedforward
phase is executed once (yielding a single output sample).

If tone detection had been implemented using FFTs, the values of N
would have been limited to those that were a power of the radix of the
FFT: 16 point, 32 point, 64 point, 128 point, 256 point, etc. for radix-2
(power of 2) FFTs and 16 point, 64 point, 256 point, 1024 point, etc. for
radix-4 (power of 4) FFTs. DFTs and Goertzel algorithms, however, are
not limited to any radix. These can be computed using any integer value
for N.

When an N-point DFT is being evaluated, N input samples (equally
spaced in time) are processed to yield N output samples (equally spaced
in frequency). The N output samples are:

X(k) where k = 0, 1, 2, ... , N–1

The spacing of the output samples is determined by half the sampling
frequency divided by N. If some tone is present in the input signal which
does not fall exactly on one of these points in the frequency domain, its

1414141414

 464 464 464 464 464

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

frequency component appears partly in the closest frequency point, and
partly in the other frequency points. This phenomenon is called leakage.
To avoid leakage, it is desirable for all the tones to be detected to be
exactly centered on a frequency point. The discrete frequency points are
referenced by their k value. The value of k can be any integer within the
range 0, 1, 2, ..., N–1. The actual frequency to which k corresponds is
dependent on the sampling frequency and N as determined by the

ftone

fsampling

k
N

=

following formula:
or

k =
N

fsampling
ftone•

where ftone is the tone frequency being detected and k is an integer.

Since the sampling frequency is set at 8kHz by the telephone system, and
the tones to detect are the DTMF tones, which are also set, the only
variable we can modify is N. The numbers k must be integers, so the
corresponding frequency points may not be exactly the DTMF frequencies
desired. The corresponding absolute error is defined as the difference
between what k would be if it could be any real number and the closest

integer to that optimal value. For example:
Bell Labs specifically chose the DTMF tones such that they would not be
harmonically related. This makes it difficult to choose a value N for which
all tones exactly match the DTMF frequency points. A solution could be to
perform separate Goertzel algorithms (each with a different value of N)
for each tone, but that would involve a lot of non-computational processor
overhead. Instead, in this example, values of N were chosen for which the
maximum absolute k error of any one of the tones was considered
acceptably small. Then, the length of time to detect a tone (which is

absolute k error =
Nf tone

f sampling
– CLOSEST INTEGER

Nf tone

f sampling

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

465465465465465

proportional to the sampling rate multiplied by N) was taken into
consideration. The value of N best suited for detecting the eight DTMF
fundamental tone frequencies was chosen to be 205. The value of N best
suited for detecting the eight second harmonic frequencies was chosen to
be 201. See Table 14.6 for the corresponding k values and their respective
absolute errors. These values of k allow Goertzel outputs to occur
approximately once every 26 milliseconds.

Fundamental k value k value Absolute coefk
Frequency floating-point nearest integer k error
(N=205)
697.0Hz 17.861 18 0.139 1.703275
770.0Hz 19.731 20 0.269 1.635859
852.0Hz 21.833 22 0.167 1.562297
941.0Hz 24.113 24 0.113 1.482867

1209.0Hz 30.981 31 0.019 1.163138
1336.0Hz 34.235 34 0.235 1.008835
1477.0Hz 37.848 38 0.152 0.790074
1633.0Hz 41.846 42 0.154 0.559454

Second
Harmonic
(N=201)
1394.0Hz 35.024 35 0.024 0.917716
1540.0Hz 38.692 39 0.308 0.688934
1704.0Hz 42.813 43 0.187 0.449394
1882.0Hz 47.285 47 0.285 0.202838

2418.0Hz 60.752 61 0.248 –0.659504
2672.0Hz 67.134 67 0.134 –1.000000
2954.0Hz 74.219 74 0.219 –1.352140
3266.0Hz 82.058 82 0.058 –1.674783

sampling frequency = 8kHz

Table 14.6 Values of k and Absolute k ErrorTable 14.6 Values of k and Absolute k ErrorTable 14.6 Values of k and Absolute k ErrorTable 14.6 Values of k and Absolute k ErrorTable 14.6 Values of k and Absolute k Error

14.5.314.5.314.5.314.5.314.5.3 DTMF Decoding ProgramDTMF Decoding ProgramDTMF Decoding ProgramDTMF Decoding ProgramDTMF Decoding Program
For DTMF decoding, the ADSP-2100 solves sixteen separate modified
Goertzel algorithms, eight of length 205 to detect the DTMF fundamentals,
and eight of length 201 to detect the DTMF second harmonics. To

1414141414

 466 466 466 466 466

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

implement concurrent Goertzel algorithms of lengths 205 and 201, the
feedback phase iterations of all the Goertzel algorithms (fundamentals
and second harmonics) are performed for 201 samples (n=0, 1,..., 200). For
the next four samples, only the Goertzel algorithms of length 205
(fundamentals) are iterated (n=201, 202, 203, 204). The other Goertzel
algorithms of length 201 (second harmonics) ignore the new samples. On
the last iteration, when n=N=205, all the feedforward phases are evaluated
(both fundamentals and second harmonics), and any new input samples
at that time are ignored. In the DTMF decoder application presented here
which uses the modified Goertzel algorithm, the magnitude squared
calculations are performed for the feedforward phases.

DTMF decoding is done in two major tasks, as shown in the block
diagram in Figure 14.13. The first task solves sixteen Goertzel algorithms
to calculate the magnitudes squared of tone frequencies present in the
input signal, then the second task tests the frequency results to determine
if the tones detected constitute a valid DTMF digit. The first task spans
N+1 processor interrupts, N for the feedback phases of the Goertzel
algorithms, then one more for the feedforward phases. The second task
immediately follows completion of all sixteen feedforward phases. The
length of time required by the processor for this testing may span the next
few interrupts (during which time new input samples are ignored), but
since the number of input samples lost is small compared to the number
of interrupts serviced during the Goertzel evaluations, the loss is
insignificant (see Figure 14.15). The Goertzel algorithms are not sensitive
to incoming signal phase, and therefore no phase synchronization is
attempted.

14.5.3.114.5.3.114.5.3.114.5.3.114.5.3.1 Input ScalingInput ScalingInput ScalingInput ScalingInput Scaling
It is important to notice that the input sample values are scaled down by
eight bits to eliminate the possibility of overflows within 205 iterations of
the feedback phase. Scaling by eight bits increases the quantization error
of the input samples, but this does not affect the effectiveness of the
decoder. Input samples are read from a µ-law-compressed codec. The 8-bit
data values are used as offset values to a µ-law-to-linear conversion look-
up table. The corresponding linear values are scaled such that the input
samples range from H#007F to H#FF80 instead of the normalized
equivalent range of H#7FFF to H#8000.

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

467467467467467

wait for
interrupt

read sample
from CODEC linear expansion

Goertzel
calculations

2x697 Hz
(N=201)

Goertzel
2x770

 Hz

Goertzel
2x852

 Hz

Goertzel
2x941

 Hz

Goertzel
2x1209

 Hz

Goertzel
2x1336

 Hz

Goertzel
2x1477

 Hz

Goertzel
2x1633

 Hz

Goertzel
calculations
for 697 Hz
(N=205)

Goertzel
770 Hz

Goertzel
852 Hz

Goertzel
941 Hz

Goertzel
1209 Hz

Goertzel
1336 Hz

Goertzel
1477 Hz

Goertzel
1633 Hz

is the twist acceptable?

are the associated second harmonics below their acceptable threshold values?

set 'outputcode'
to invalid

set 'outputcode' to
value specified
by DTMF map

is 'outputcode' new
since last decode operation?

send 'outputcode'

fail

fail

fail

chose the row which is above the
minimum tone-present threshold

and make sure no other rows are above the
maximum tone-not-present threshold

row and
col tests

pass

chose the column which is above the
minimum tone-present threshold

and make sure no other columns are above the
maximum tone-not-present threshold

fail row and
col tests

pass

pass

no

yes

IRQ
received

only up
to here

if n=201,
202,203,204

continue
only if n=205,

otherwise
return

return

return

choose one choose one

pass

1414141414

 468 468 468 468 468

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

Figure 14.13 Tone Decoder Block DiagramFigure 14.13 Tone Decoder Block DiagramFigure 14.13 Tone Decoder Block DiagramFigure 14.13 Tone Decoder Block DiagramFigure 14.13 Tone Decoder Block Diagram

14.5.3.214.5.3.214.5.3.214.5.3.214.5.3.2 Multi-Channel DTMF Decoder SoftwareMulti-Channel DTMF Decoder SoftwareMulti-Channel DTMF Decoder SoftwareMulti-Channel DTMF Decoder SoftwareMulti-Channel DTMF Decoder Software
An example of a multi-channel DTMF decoder is given in Listing 14.2.
This example is a 6-channel version, although at least twelve channels can
be decoded by an ADSP-2100A running at a 12.5MHz instruction rate. The
six channels are labeled channel A, channel B, ..., channel F. The following
software description gives an overview of the variables and constants
used, then outlines the core executive routine and describes the interrupt
service routine. The macros and subroutines are explained as needed.

14.5.3.314.5.3.314.5.3.314.5.3.314.5.3.3 Constants, Variables and I/O PortsConstants, Variables and I/O PortsConstants, Variables and I/O PortsConstants, Variables and I/O PortsConstants, Variables and I/O Ports
The number of channels to decode is specified in the .CONST declaration
section. The number of channels must be greater than one and less than or
equal to the maximum number of channels allowed, which is dependent
on the processor cycle time. The faster the processor cycle time, the more
channels can be decoded in real time. The limiting factor is how many of
the Goertzel feedback operations can be performed between successive
processor interrupts (see Figure 14.14). To decode a single channel only,
the source code must be slightly altered. The only necessary alteration
involves the circular buffer of length channels which stores the input
samples; this buffer must be changed to a single data memory variable.
Although not necessary, other alterations can be done to optimize the
software for a single channel if desired.

The hexadecimal value which the decoder outputs when no DTMF digit is
received is defined by the constant called baddigitcode. For debugging
purposes, a variable called failurecode was incorporated into each channel.
This variable is assigned a value whether or not a valid DTMF digit was
received. If a valid digit was received, failurecode is set to zero. A nonzero
failurecode means that the signals received failed one of the qualifying
tests. The failurecode value, defined in the constant declaration section,
identifies which test failed.

The data variables are separated into two functional groups:
housekeeping variables and individual-channel variables. The
housekeeping variables are used by the software shared by all sections of
the decoder. The individual channel variables are used to keep track of
specifics for each channel separately. The variables are explained in detail
in Listing 14.2.

The input port for each channel is a codec. The output port for each

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

469469469469469

channel is a D/A converter in this example. In a more realistic application,
such as a PBX, switching machine, or electronic voice-mail system, the
output would probably be sent to dual-port memory or a mailbox register
for use by another processor.

The initialization directives set up some of the static, housekeeping
variables. The Goertzel coefficients are initialized as well as the µ-law-to-
linear look-up table, thresholds for the received signal levels and twist test
limits. (The file containing the µ-law look-up values is not included in the
program listings; however, it is included in the diskette that contains the
programs in this manual, which is available from your local Analog
Devices Sales Office.) These initializations could be adjusted for
application-specific requirements, such as meeting the specifications of
other administrations or operating as a DTMF signal tester.

To decode more or fewer than six channels, simply add or remove
sections identified by the comment “edit this for more channels” in the
source code listing.

14.5.3.414.5.3.414.5.3.414.5.3.414.5.3.4 Main CodeMain CodeMain CodeMain CodeMain Code
The main code section is very simple. The processor is initialized for the
decoding operation, then put into an endless loop, waiting for interrupts
that occur at the sampling rate (8kHz). After the ADSP-2100 is reset, the
first task is to set up the static environment, such as the M and L registers
in both data address generators and the ICNTL register. This task is done
only once since these initializations are never changed. This set-up is
performed by the subroutine called setup. Another subroutine called
restart then initializes other variables which are needed for the decoding
operation, but which change and must therefore be reinitialized after each
decode operation. The specific tasks here include resetting the I registers
of the data address generators to the top of their associated buffers,
zeroing out the delay elements for the Goertzel algorithm implementation
(Q values), and resetting the counters which keep track of the input
sample number (n). The restart routine is called after every decode
operation, immediately after completion of the digit validation tests, as
well as before the very first decode operation.

14.5.3.514.5.3.514.5.3.514.5.3.514.5.3.5 Interrupt Service RoutineInterrupt Service RoutineInterrupt Service RoutineInterrupt Service RoutineInterrupt Service Routine
The ADSP-2100 is interrupted at an 8kHz sampling rate. The first task
done by the processor is to read a new input sample from each codec and
store the input samples in a buffer. Next, counters are decremented and
tested to determine which sample (n = 0, 1, 2, ..., 205) is currently being

1414141414

 470 470 470 470 470

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

processed. If n is between 0 and 200 (inclusive), Goertzel feedback
operations are performed on sixteen frequencies per channel, eight
fundamental tones and eight second harmonic tones. If n is 201, 202, 203,
or 204, then Goertzel feedback operations are performed on the eight
fundamental tones for each channel only. The second harmonics are
skipped. If n is 205, then magnitude-squared calculations are performed
on the eight fundamental tones of each channel, the post testing and digit
validation takes place, a new digit is output if necessary, and the restart
routine is called to reinitialize the processor for the next decoding
operation.

Since interrupt nesting mode is not enabled, and since no other interrupts
are being used, the processor should never see another interrupt until it
has finished executing the interrupt service routine. You need to ensure
that the processor does not attempt to decode too many channels, in
which case the length of time to perform the sixteen Goertzel operations
per channel during samples 0 through 200 would be greater than the
sampling period (125µs) (see Figure 14.14). There is one special case in
which an interrupt may be overlooked. This is when n=205. In this case,
the length of time it takes to perform the magnitude-squared calculations
and all the digit validation tests for all channels may exceed the sampling
period. Since losing a few input samples out of 205 samples is relatively
insignificant, and since incoming signal phase is unimportant, this overlap
can be disregarded.

14.5.3.614.5.3.614.5.3.614.5.3.614.5.3.6 Post-Testing and Digit ValidationPost-Testing and Digit ValidationPost-Testing and Digit ValidationPost-Testing and Digit ValidationPost-Testing and Digit Validation
When calling the macros in the source code listing, the various channels
are identified by prefixing each channel’s variables with an alphabetic
character and underscore. For example, the macro maxrowcol is called
thus:

maxrowcol
(^A_mnsqr,A_maxrowval,A_whichrow,A_maxcolval,A_whichcol)
maxrowcol
(^B_mnsqr,B_maxrowval,B_whichrow,B_maxcolval,B_whichcol)

etc.

Each channel is tested sequentially, identifying each channel’s variables
by alphabetic prefixes.

Maxrowcol
After completion of the magnitude-squared computations for the eight

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

471471471471471

fundamental tones of each channel, those results reside in each channel’s
mnsqr buffer. The maxrowcol macro scans through the results and picks out
the largest row result, storing its value in the variable maxrowval and its
index in the variable whichrow. Whichrow can be 1, 2, 3, or 4. These values
correspond to the frequencies 697Hz, 770Hz, 852Hz, and 941Hz. The
column results are likewise scanned, and the largest value and its index
assigned to maxcolval and whichcol. Subsequent testing could set whichrow
or whichcol to zero, indicating that some validation test has failed.

Minsiglevel
The minsiglevel macro checks the largest row result and the largest column
result chosen to determine whether or not each value exceeds the
minimum level necessary for a valid tone. Each tone has its own
minimum level threshold in the buffer called min_tone_level. Each tone
was given its own threshold because of the absolute k error (see previous
section on chosing k and N). The DTMF tone frequencies do not
correspond exactly to integer multiples of 205/8000; in fact, each tone has
a different absolute k error making it necessary to test each magnitude-
squared result independently.

The macro minsiglevel takes the address of the min_tone_level buffer and
adds to it the value of whichrow minus one. The resulting address is used
to look up the minimum signal threshold for that particular row tone. The
magnitude squared, stored in maxrowval, is compared to the threshold.
Failure here sets whichrow and whichcol each to zero, sets failurecode to
H#0001 and exits. Otherwise, the row tone passes the test, and the column
tone is checked in the same manner as row tone.

No_Other_Peaks
DTMF specifications require that the decoder detect a digit if and only if
one row tone is present as well as one and only one column tone is
present. The no_other_peaks macro makes sure that all the tones other than
the maximum row and column tones are below the non-digit threshold.

As in the minsiglevel test, this test uses independent thresholds for each
tone. The thresholds are stored in the buffer called max_notone_level.
However, instead of computing each address independently as in the
minimum signal level test, this test scans through the whole result (mnsqr)
buffer and increments a counter (AF register) once for each tone which
exceeds the maximum no-tone level. At the end of the scan, the AF
register should contain the value H#0002, for one valid row tone and one

1414141414

 472 472 472 472 472

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

valid column tone. If any other number is in the AF register, this test fails.
If the test fails, whichrow and whichcol are each set to zero and failurecode is
set to H#0002.

Twisttests
Twist is the difference, in decibels, between the row tone level and the
column tone level. Forward twist (also called standard twist) exists when
the column tone level is greater than the row tone level. Reverse twist
exists when the column tone is less than the row tone level. DTMF digits
are often generated with some forward twist to compensate for greater
losses at higher frequencies within a long telephone cable. Different
administrations recommend different amounts of allowable twist for
DTMF receivers. For example, CEPT recommends not more than 6dB of
either twist, Brazil allows 9dB, Australia allows 10dB, Japan allows only
5dB, and AT&T recommends not more than 4dB of forward twist or 8dB
of reverse twist.

The twist test macro uses the variables maxrowcol, maxcolval, whichrow, and
whichcol to compute the twist value, setting twistval and comparing that
value against the predefined twist limits stored in the variables maxfortwist
and maxrevtwist. The macro sets failurecode to H#0003 upon failure and
sets either the flag fortwistflag, or revtwistflag as appropriate.

First, the row tone level is compared to the column tone level. If the row
tone is greater, program flow jumps to the label reverse; otherwise, it
continues at standard. The standard twist test divides maxrowval by
maxcolval and compares the resultant ratio to maxfortwist. (A ratio of
powers is equivalent to a difference in decibels.) Maxfortwist is the ratio
that would result if the greatest allowable twist was encountered. Any
ratio which is between that value and unity passes the twist test.

Likewise, if the column tone level was greater, maxcolval is divided by
maxrowval, and the resulting ratio is compared to maxrevtwist. If the ratio
is greater than maxrevtwist, the twist test passes. Of course, a twist value of
0dB would result in a ratio of unity. A very large twist value would result
in a very small ratio. The ratio (row or column) is calculated in such a way
to ensure that the numerator is always smaller than the denominator. This
is done because of how the ALU of the ADSP-2100 performs division.

Check2ndharm
The last item to verify is the level of second harmonic energy present in
the detected row and column tones. This test is performed to help the
decoder reject speech which might be detected as DTMF tones. This
property is referred to as talk-off. DTMF tones should be pure sinusoids,

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

473473473473473

and therefore contain very little second harmonic energy, if any. Speech,
on the other hand, contains significant amount of second harmonic
energy.

To test the level of second harmonic energy present, the decoder must
concurrently evaluate Goertzel algorithms for the second harmonic
frequency of all eight DTMF fundamental tones. The second harmonic
frequencies (1394Hz, 1540Hz, 1704Hz, 1882Hz, 2418Hz, 2672Hz, 2954Hz,
and 3266Hz) can be detected at an 8kHz sampling rate (concurrently with
the fundamentals) using Goertzel algorithms of length N=201. This is
conveniently close to the length N=205 chosen for the fundamental tones.

During the execution of the Goertzel feedback section of code, both the
fundamentals and the second harmonic tones are processed until the
counter variable called count201 expires. For the next four interrupts,
another counter called count4 controls the Goertzel feedback operations. In
the latter case, only the eight fundamentals are processed for each
channel. The second harmonics are skipped. After the 205th sample has
been processed, the Q1Q2_buff buffer contains the Goertzel feedback
results of the fundamentals at N=205 and of the second harmonics at
N=201. When the next interrupt is received, the magnitude-squared
computations are carried out for the eight fundamentals of each channel,
but no processing is done on the second harmonics yet.

After all the other DTMF digit validation tests are performed, the
check2ndharm macro carries out the magnitude-squared computations for
the second harmonics. But at this time, only two magnitude-squared
calculations are performed, one for each detected DTMF tone. This saves
the time which would have been wasted if all eight second harmonics had
been computed concurrently with the eight fundamentals.

To check the second harmonic level, the address of the channel’s Goertzel
feedback buffer is passed the check2ndharm macro along with the detected
tone index variables whichrow and whichcol. The addresses of the Goertzel
feedback values are calculated from the base address plus the index
values. The magnitude-squared subroutine is called, and the results are
stored in the variables called rowharm and colharm. Those results are
compared to each tone’s maximum second harmonic level threshold. The
thresholds are stored in the buffer max_2nd_harm and, like the
fundamental thresholds, are each independently adjustable for each tone.

Outputcode
The last task performed during a decoding sequence is to output a code

1414141414

 474 474 474 474 474

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

representing the DTMF digit to the output port. In many applications, this
would probably involve writing a hexadecimal code to dual-port RAM or
a mailbox for use by the host processor in a PBX, electronic mail system,
or digital telephone switch. In this software example, the code is written to
a D/A converter. The output of the D/A converter can be used to deflect
the vertical trace of an oscilloscope to monitor decoder activity. The extent
of the deflection varies according to which DTMF digit is received, if any.
If nothing is received, or an invalid digit is received, the code sent to the
D/A converter is the constant baddigitcode. If a valid digit is received, the
index variables whichrow and whichcol are used to compute the code as
follows:

16-bit code = 4096 x [4(whichrow–1) + (whichcol–1)]

In effect, a hexadecimal digit is generated and placed in the most
significant hexadecimal digit (4 bits) position of a 4-digit hexadecimal (16
bits) word. The three less significant hexadecimal digits are set to zeros.
See Table 14.7 for the one-to-one relationship between received DTMF
digits and hexadecimal code output.

DTMF Output DTMF Output
Digit Code Digit Code

1 H#0000 7 H#8000
2 H#1000 8 H#9000
3 H#2000 9 H#A000
A H#3000 C H#B000
4 H#4000 * H#C000
5 H#5000 0 H#D000
6 H#6000 # H#E000
B H#7000 D H#F000

Invalid H#FFFF (baddigitcode)

Table 14.7 DTMF Tones and Output CodesTable 14.7 DTMF Tones and Output CodesTable 14.7 DTMF Tones and Output CodesTable 14.7 DTMF Tones and Output CodesTable 14.7 DTMF Tones and Output Codes

The outputcode macro not only outputs the appropriate code to the output
port, but it also decides whether or not to output anything at all. There
must be some distinction made between a long, sustained DTMF signal
and several short DTMF signals of the same digit. In other words, it would
be undesirable to have the DTMF decoder interrupt a host processor
informing it of a stream of new DTMF digits when actually only one
DTMF digit was received, but sustained for a long period of time.

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

475475475475475

For each channel, three decoder-output codes are compared: the current
code, the last code, and the next-to-last code. The last and next-to-last
codes are stored in the digit_history buffers.

The current code is written to the channel’s D/A converter if and only if
the current code is equal to the last code, but different than the next-to-last
code. Whether or not a new digit was detected, the digit_history list is
updated every time by overwriting the last code with the current code,
and overwriting the next-to-last code with the last code. This updates the
history list for the next decode operation.

Restart
Before starting the next decode operation, the restart subroutine is called.
This routine sets all the Goertzel feedback elements to zero, restoring the
Goertzel algorithm’s initial conditions. The restart routine also resets data
memory pointers and the two counters (count201 and count4) which keep
track of which input sample is being processed.

14.5.3.714.5.3.714.5.3.714.5.3.714.5.3.7 Performance ConsiderationsPerformance ConsiderationsPerformance ConsiderationsPerformance ConsiderationsPerformance Considerations
The fastest rate of detecting DTMF digits is dictated by how long it takes
to perform two successful (all tests passed), sequential decode operations.
The amount of time it takes to execute a single decode operation can be
calculated as follows:

201(Tsample) + 4(Tsample) + Tposttest

where
and

Tposttest = number of channels (T8_fund_mnsqr + Teach) + Trestart

Teach = Tmaxrowcol + Tminsiglevel + Tno_other_peaks + Ttwisttests

+ Tcheck2ndharm + Toutputcode

The exact execution time for Tposttest varies with the number of channels
being decoded, and also with the actual data processed on those channels.
Some of the tests could fail early in their executions, thereby skipping

Tsample =
f

1
 = 125 µs

sample

1414141414

 476 476 476 476 476

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

69
7

77

0

85
2

94

1

12
09

13

36

14
77

16

33

2x
69

7

2x

77
0

2x
85

2

2x

94
1

2x
12

09

2x
13

36

2x
14

77

2x
16

33

channel 1

t

Tsampling

•••

id
leCH 1 CH 2 CH N •••

id
leCH 1 CH 2 CH N

id
le

69
7

77

0

85
2

94

1

12
09

13

36

14
77

16

33

channel 1

t

Tsampling

••• idleCH 1 CH 2 CH Nid
le ••• idleCH 1 CH 2 CH N

Tposttest

feedforward maxrowcol minsiglevel no_other_peaks twisttests check2ndharm outputcode restart

t

85
2

94
1

12
09

13
36

16
33

14
77

69
7

77
0

C
H

 1

C
H

 2

C
H

 N...

C
H

 1

C
H

 2

C
H

 N... ••• etc

n = 0, 1, 2, ..., 200
feedback iterations
(fundamentals & 2nd harmonics)

n = 201, 202, 203, 204
feedback iterations
(fundamentals only)

n = 205
posttesting and
digit validation

subsequent instructions and testing. Figures 14.14 and Figure 14.15, on the
following pages, show processor loading for the 6-channel decoder

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

477477477477477

201 Tsampling

4 Tsampling

Tposttest

one decode operation next decode operation

= feedback phase, n = 0, 1, 2, ..., 200

= feedback phase, n = 201, 202, 203, 204

= postprocessing (feedforward phase, digit validation and output)

example in Listing 14.2.

Figure 14.14 Multi-Channel Decoding TimingFigure 14.14 Multi-Channel Decoding TimingFigure 14.14 Multi-Channel Decoding TimingFigure 14.14 Multi-Channel Decoding TimingFigure 14.14 Multi-Channel Decoding Timing

Figure 14.15 Multi-Channel Decoder Output RateFigure 14.15 Multi-Channel Decoder Output RateFigure 14.15 Multi-Channel Decoder Output RateFigure 14.15 Multi-Channel Decoder Output RateFigure 14.15 Multi-Channel Decoder Output Rate

14.614.614.614.614.6 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Bellamy, John. 1982. Digital Telephony. New York: John Wiley & Sons.

Blahut, Richard E. 1985. Fast Algorithms for Digital Signal Processing.
Reading, MA: Addison-Wesley.

–. 1982. Reference Data for Radio Engineers. New York: Howard Sams.

–. 1986. IEEE Standard for Functional Requirements for Methods and
Equipment for Measuring the Performance of Tone Address Signaling Systems.
(ANSI/IEEE Standard 752-1986). New York: IEEE Press.

Burrus, C.S. and T.W. Parks. 1985. DFT/FFT and Convolution Algorithms.
New York: John Wiley & Sons.

Oppenheim, Alan V. and Ronald W. Schafer. 1975. Digital Signal
Processing. New York: Prentice-Hall.

1414141414

 478 478 478 478 478

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

Pearce, J. Gordon. 1981. Telecommunications Switching. New York: Plenum
Press.

Some Administration Specifications

CCITT:
Recommendations Q.23 and Q.24 in Section 4.3 of the CCITT Red Book,
Volume VI, Fascicle VI.1.

AT&T:
Compatibility Bulletin No. 105. TOUCHTONE Calling - Requirements for the
Central Office. 1975.

CEPT:
Recommendations T/CS 46-02, T/STI 46-04, T/CS 28-01, T/CS 34-08, T/
CS 34-09, T/CS 42-02, T/CS 49-04, T/CS 49-07, T/CS 01-02, T/CS 14-01.
1986.

British Post Office:
POR 1151. Section 2. Issue 4. 1979.

14.714.714.714.714.7 PROGRAM LISTINGSPROGRAM LISTINGSPROGRAM LISTINGSPROGRAM LISTINGSPROGRAM LISTINGS
The complete listings for both the DTMF encoder and 6-channel DTMF
decoder are presented in this section.

14.7.114.7.114.7.114.7.114.7.1 DTMF Encoder ListingDTMF Encoder ListingDTMF Encoder ListingDTMF Encoder ListingDTMF Encoder Listing
The code below encodes DTMF digits from a list in data memory. It
implements the 3-state software state machine described earlier in this
chapter. In state 0, no digits are generated; the ADSP-2100 is idle. In state
1, a continuous dial tone (350Hz + 400Hz) is generated. In state 2, the
DTMF dialing list is sequentially read and DTMF digits generated. The
state machine stays in each state until the IRQ2 interrupt (connected in the

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

479479479479479

{ DTMF Signal Generator using ADSP-2100 }

.MODULE/RAM/ABS=0 DTMF_Dialer;

.VAR row0,row1,row2,row3,col0,col1,col2,col3;
{for reference only}

.VAR hertz1, hertz2; {scratchpad storage: frequency}

.VAR sum1, sum2; {scratchpad storage: phase accum}

.VAR sin1, sin2; {scratchpad storage: sine result}

.VAR scale; {divisor for scaling sine waves}

.VAR state; {current state of state machine}

.VAR sign_dura_ms; {signal duration time in milliseconds}

.VAR interdigit_ms; {interdigit time in milliseconds}

.VAR time_on; {down counter: tones on }

.VAR time_off; {down counter: tones off (silence)}

.VAR digits[32]; {lookup table for row,col freqs}

.VAR dial_list[100]; {stores sequence to dial}

{ store values in dial_list as follows:
(E=*, F=#)

DTMF tone: h#000y, y=0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
quiet space: h#00yX, y is non-zero, X is don’t care
redial: h#0yXX, y is non-zero, X is don’t care
stop: h#yXXX, y is non-zero, X is don’t care

}

.PORT dac; {DTMF output to D/A for inspection}

.PORT codec; {DTMF output also to µ-law codec}

.INIT row0: h#02B9; { 697 Hz}

.INIT row1: h#0302; { 770 Hz}

.INIT row2: h#0354; { 852 Hz}

.INIT row3: h#03AD; { 941 Hz}

.INIT col0: h#04B9; {1209 Hz}

.INIT col1: h#0538; {1336 Hz}

.INIT col2: h#05C5; {1477 Hz}

.INIT col3: h#0661; {1633 Hz}

.INIT digits[00]: h#03AD,h#0538, h#02B9,h#04B9,
h#02B9,h#0538, h#02B9,h#05C5;

.INIT digits[08]: h#0302,h#04B9, h#0302,h#0538,
h#0302,h#05C5, h#0354,h#04B9;

.INIT digits[16]: h#0354,h#0538, h#0354,h#05C5,
h#02B9,h#0661, h#0302,h#0661;

.INIT digits[24]: h#0354,h#0661, h#03AD,h#0661,
h#03AD,h#04B9, h#03AD,h#05C5;

(listing continues on next page)

1414141414

 480 480 480 480 480

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

.INIT scale: h#FFFC;

.INIT sign_dura_ms: h#0032; {50 ms}

.INIT interdigit_ms: h#0032; {50 ms}

.INIT dial_list: h#00F0, h#0003, h#0000, h#0005,
h#0008, h#FFFF;

.EXTERNAL u_compress;

.EXTERNAL sin;

IRQ0: RTI;
IRQ1: RTI;
IRQ2: JUMP next_state;
IRQ3: JUMP eight_khz;

setup: SI=0;
DM(state)=SI;
CALL reset;
L0=0; L1=0; L2=0; L3=0;
L4=0; L5=0; L6=0; L7=0;
I0=^dial_list;
M0=1;
M3=1; L3=0; {used by sine routine}
ICNTL=b#01111;
IMASK= b#1100;

wait_int: JUMP wait_int;

eight_khz: AY0=2;
AX0=DM(state);
AR=AX0-AY0;
IF EQ JUMP state2;
AF=AY0-1;
AR=AX0-AF;
IF EQ JUMP state1;

state0: RTI;
state1: AX0=350;

DM(hertz1)=AX0;
AX0=440;
DM(hertz2)=AX0;
JUMP maketones;

state2: AY0=DM(time_on);
AR=PASS ay0;
IF EQ JUMP quiet;
AR=AY0-1;
DM(time_on)=AR;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

481481481481481

maketones: SE=DM(scale);

tone1: AY0=DM(sum1);
SI=DM(hertz1);
SR=ASHIFT SI BY 3 (HI); {mult Hz by 8}
MY0=h#4189; {mult by 0.512}
MR=SR1*MY0(RND); {mult by 2}
SR=ASHIFT MR1 BY 1 (HI); {i.e. Hz * 8.192}
AR=SR1+AY0;
DM(sum1)=AR;
AX0=AR;
CALL sin;
SR=ASHIFT AR (HI); {scale value in SE}
DM(sin1)=SR1;

tone2: AY0=DM(sum2);
SI=DM(hertz2);
SR=ASHIFT SI BY 3 (HI); {mult Hz by 8}
MY0=h#4189; {mult by 0.512}
MR=SR1*MY0(RND); {mult by 2}
SR=ASHIFT MR1 BY 1 (HI); {i.e. Hz * 8.192}
AR=SR1+AY0;
DM(sum2)=AR;
AX0=AR;
CALL sin;
SR=ASHIFT AR (HI); {scale value in SE}
DM(sin2)=SR1;

add_em: AX0=DM(sin1);
AY0=DM(sin2);
AR=AX0+AY0;

sound: AY0=h#8000;
AR=AR XOR AY0;
DM(dac)=AR;
AR=AR XOR AY0;
CALL u_compress;
DM(codec)=AR;
RTI;

quiet: AY0=DM(time_off);
AR=PASS AY0;
IF EQ JUMP nextdigit;
AR=AY0-1;
DM(time_off)=AR;

(listing continues on next page)

1414141414

 482 482 482 482 482

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

AY0=h#8000;
AR=h#7FFF;
DM(dac)=AR;
AR=AR XOR AY0;
CALL u_compress;
DM(codec)=AR;
RTI;

nextdigit: CALL reset;
AX0=DM(I0,M0); {read next digit out of list}
AY0=h#F000;
AR=AX0 AND AY0;
IF EQ JUMP notstop;

stop: AR=0;
DM(state)=AR;
RTI;

notstop: AY0=h#0F00;
AR=AX0 AND AY0;
IF EQ JUMP notredial;

redial: I0=^dial_list;
RTI;

notredial: AY0=h#00F0;
AR=AX0 AND AY0;
IF EQ JUMP newdigit;

space: AX0=DM(time_on);
AY0=DM(time_off);
AR=AX0+AY0;
DM(time_off)=AR;
AR=0;
DM(time_on)=AR;
RTI;

newdigit: AY0=h#000F;
AR=AX0 AND AY0;
SR=LSHIFT AR BY 1 (HI);
AY0=^digits;
AR=SR1+AY0;
I1=AR;
AX0=DM(I1,M0); {look up row freq}
DM(hertz1)=AX0;
AX0=DM(I1,M0); {look up col freq}
DM(hertz2)=AX0;
RTI;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

483483483483483

reset: SI=0;
DM(sum1)=SI;
DM(sum2)=SI;

SI=DM(sign_dura_ms);
SR=ASHIFT SI BY 3 (HI);
AY0=SR1;
AR=AY0-1;
DM(time_on)=AR;

SI=DM(interdigit_ms);
SR=ASHIFT SI BY 3 (HI);
AY0=SR1;
AR=AY0-1;
DM(time_off)=AR;
RTS;

next_state: I0=^dial_list;
CALL reset;
AY0=DM(state);
AR=AY0+1;
DM(state)=AR;
AY0=3;
AR=AR-AY0; {mod 3, no state 3 exists}
IF NE RTI;
AR=0;
DM(state)=AR;
RTI;

.ENDMOD;

example to a pushbutton) is received. Also, in state 2 when a “stop”
control word is read out of the dialing list, the machine jumps back to

1414141414

 484 484 484 484 484

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

state 0. Output from the encoder is sent via an I/O port to a D/A
converter and is also logarithmically compressed and send to a codec.

Listing 14.1 DTMF Encoder ProgramListing 14.1 DTMF Encoder ProgramListing 14.1 DTMF Encoder ProgramListing 14.1 DTMF Encoder ProgramListing 14.1 DTMF Encoder Program
14.7.214.7.214.7.214.7.214.7.2 DTMF Decoder ListingDTMF Decoder ListingDTMF Decoder ListingDTMF Decoder ListingDTMF Decoder Listing
The code below is the multi-channel DTMF decoder described earlier in
this chapter. The six channels are labeled channel A, channel B, ..., channel
F. Channels can be added or removed by modifying sections identified by
the comment “edit this for more channels.”

Input samples are assumed to come from a µ-law codec, and output codes
are sent to a D/A converter via an I/O port. DTMF decoding is done in
two major tasks. The first task solves sixteen Goertzel algorithms to
calculate the magnitudes squared of tone frequencies present in the input
signal, then the second task tests the frequency results to determine if the
tones detected constitute a valid DTMF digit. The first task spans N+1

{ }
{ Multi Channel DTMF Decoder (six channels shown here) }
{ }
{ INPUT: one voiceband telephone codec per channel }
{ OUTPUT: DTMF digits are detected within each channel, with a }
{ corresponding hexadecimal code written to that channel’s }
{ output port (D/A converter) as an activity monitor }
{ }

.MODULE/RAM/ABS=0 Multi_Channel_DTMF_Decoder;

.CONST channels = 6; {must be 2 or more}
{edit this for more channels}

.CONST channels_x_32 = 192;
{edit this for more channels}

.CONST baddigitcode = h#FFFF; {output code for non-digit}

.CONST pass_posttests = 0;

.CONST fail_minsig = 1;

.CONST fail_relpeak = 2;

.CONST fail_twist = 3;

.CONST fail_2ndharm = 4;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

485485485485485

{ === housekeeping variables === }
{16.0 fixed-point integers}
.VAR count201; {counts samples 0 to 200}
.VAR count4; {counts samples 201 to 204}

{1.15 fixed-point fractions}
.VAR min_tone_level[8]; {min “tone-present” mnsqr level}
.VAR max_notone_level[8]; {max “tone-not-present” mnsqr level}
.VAR max_2ndharm_level; {2nd harmonic must be LT this value}
.VAR maxfortwist; {quotient row/col must be GT this value}
.VAR maxrevtwist; {quotient col/row must be GT this value}
.VAR mu_lookup_table[256]; {mu-expansion lookup table (scaled 8 bits)}
.VAR/CIRC in_samples[channels]; {linear input samples (scaled down 8 bits)}

.VAR/CIRC A_Q1Q2_buff[32], {Goertzel feedback storage elements}
B_Q1Q2_buff[32],
C_Q1Q2_buff[32],
D_Q1Q2_buff[32],
E_Q1Q2_buff[32],
F_Q1Q2_buff[32];
{edit this for more channels}

.VAR A_mnsqr[8], {1.15 Goertzel result values}
B_mnsqr[8],
C_mnsqr[8],
D_mnsqr[8],
E_mnsqr[8],
F_mnsqr[8];
{edit this for more channels}

.VAR/PM
/RAM/CIRC coefs[16]; {2.14 Goertzel coefs}

{ === individual channel variables === }
.VAR A_maxrowval; {1.15 value of max row frequency}
.VAR A_maxcolval; {1.15 value of max col frequency}
.VAR A_whichrow; {0,1,2,3,4 = invalid, row1, row2, row3, row4}
.VAR A_whichcol; {0,1,2,3,4 = invalid, col1, col2, col3, col4}
.VAR A_fortwistflag; {1 = forward twist}
.VAR A_revtwistflag; {1 = reverse twist}
.VAR A_twistval; {1.15 quotient row/col or col/row}
.VAR A_rowharm; {1.15 value of row 2nd harmonic}
.VAR A_colharm; {1.15 value of col 2nd harmonic}
.VAR A_digit_history[2]; {stores last 2 output codes}
.VAR A_failurecode; {see .CONST definitions above}

(listing continues on next page)

1414141414

 486 486 486 486 486

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

.VAR B_maxrowval;

.VAR B_maxcolval;

.VAR B_whichrow;

.VAR B_whichcol;

.VAR B_fortwistflag;

.VAR B_revtwistflag;

.VAR B_twistval;

.VAR B_rowharm;

.VAR B_colharm;

.VAR B_digit_history[2];

.VAR B_failurecode;

.VAR C_maxrowval;

.VAR C_maxcolval;

.VAR C_whichrow;

.VAR C_whichcol;

.VAR C_fortwistflag;

.VAR C_revtwistflag;

.VAR C_twistval;

.VAR C_rowharm;

.VAR C_colharm;

.VAR C_digit_history[2];

.VAR C_failurecode;

.VAR D_maxrowval;

.VAR D_maxcolval;

.VAR D_whichrow;

.VAR D_whichcol;

.VAR D_fortwistflag;

.VAR D_revtwistflag;

.VAR D_twistval;

.VAR D_rowharm;

.VAR D_colharm;

.VAR D_digit_history[2];

.VAR D_failurecode;

.VAR E_maxrowval;

.VAR E_maxcolval;

.VAR E_whichrow;

.VAR E_whichcol;

.VAR E_fortwistflag;

.VAR E_revtwistflag;

.VAR E_twistval;

.VAR E_rowharm;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

487487487487487

.VAR E_colharm;

.VAR E_digit_history[2];

.VAR E_failurecode;

.VAR F_maxrowval;

.VAR F_maxcolval;

.VAR F_whichrow;

.VAR F_whichcol;

.VAR F_fortwistflag;

.VAR F_revtwistflag;

.VAR F_twistval;

.VAR F_rowharm;

.VAR F_colharm;

.VAR F_digit_history[2];

.VAR F_failurecode;
{edit this for more channels}

{ individual channel I/O ports }
.PORT A_codec;
.PORT A_dac;

.PORT B_codec; {telephone audio 8-bit parallel codec input}

.PORT B_dac; {monitor decoder output with voltage level}

.PORT C_codec;

.PORT C_dac;

.PORT D_codec;

.PORT D_dac;

.PORT E_codec;

.PORT E_dac;

.PORT F_codec;

.PORT F_dac;
{edit this for more channels}

(listing continues on next page)

1414141414

 488 488 488 488 488

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

{ variable initializations }
.INIT coefs[00]: h#6D0200, h#68B200, h#63FD00, h#5EE700;
.INIT coefs[04]: h#4A7100, h#409100, h#329100, h#23CE00;
.INIT coefs[08]: h#3ABC00, h#2C1700, h#1CC300, h#0CFB00;
.INIT coefs[12]: h#D5CB00, h#C00000, h#A97700, h#94D000;

.INIT mu_lookup_table: < MU255.Q8 >;

.INIT min_tone_level:
 h#0003,h#0003,h#0003,h#0003,h#0003,h#0003,h#0003,h#0003;

.INIT max_notone_level:
 h#0002,h#0002,h#0002,h#0002,h#0002,h#0002,h#0002,h#0002;

.INIT max_2ndharm_level: h#0100;

.INIT maxfortwist: h#32F5;

.INIT maxrevtwist: h#1449;

{%%}
{ 8-bit mu-law sample read from specified codec, then converted }
{ to linear (1.15 scaled down 8 bits) via look-up table }
{ }
{ INPUT: channel codec to read }
{ OUTPUT: scaled linear sample in “in_samples” circular buffer }
{ }
.MACRO get_sample(%0); {make sure I3,M0,L3,M4,L6 initialized}

AY0=DM(%0); {read codec, mu-law data}
AF=AX0 AND AY0; {make sure AX0 initialized to h#00FF}
AR=AX1+AF; {make sure AX1 initialized to LUT base}
I6=AR;
SI=DM(I6,M4); {look-up scaled, linear value}
DM(I3,M0)=SI; {store input sample}

.ENDMACRO;

{%%}
{ pick largest row and col freq values }
{ }
{ INPUT: pointer to top of channel’s mnsqr buffer }
{ OUTPUT: largest row and col values and their indexes }
{ }
.MACRO maxrowcol(%0, %1, %2, %3, %4);

{^mnsqr, maxrowval, whichrow, maxcolval, whichcol}
.LOCAL findmaxrow;
.LOCAL findmaxcol;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

489489489489489
(listing continues on next page)

I2=%0;

AX1=0; {set up variables in case nothing found}
AY1=0; {set up variables in case nothing found}
AY0=0; {initialize BIGGEST-VALUE-SO-FAR to zero}
CNTR=4;
DO findmaxrow UNTIL CE;

AX0=DM(I2,M0); {read CURRENT-MNSQR-VALUE}
AR=AX0-AY0; {compare to BIGGEST-VALUE-SO-FAR}
IF LE JUMP findmaxrow;
AX1=5;
AY0=AX0; {if CURRENT is bigger, store value}
AY1=CNTR; {if CURRENT is bigger, store index}

findmaxrow: NOP;

DM(%1)=AY0; {store the largest mnsqr value}
AR=AX1-AY1;
DM(%2)=AR; {store index of biggest row (1,2,3,4)}

AX1=0;
AY1=0;
AY0=0;
CNTR=4;
DO findmaxcol UNTIL CE;

AX0=DM(I2,M0);
AR=AX0-AY0;
IF LE JUMP findmaxcol;
AX1=5;
AY0=AX0;
AY1=CNTR;

findmaxcol: NOP;
DM(%3)=AY0;
AR=AX1-AY1;
DM(%4)=AR;

.ENDMACRO;

1414141414

 490 490 490 490 490

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

{%%}
{ checks whether selected freqs are GT minimum signal power level }
{ }
{ INPUT: index of detected row and col tones }
{ value of detected row and col tones }
{ OUTPUT: failurecode set if test fails }
{ }
.MACRO minsiglevel(%0, %1, %2, %3, %4);

{whichrow, maxrowval, whichcol, maxcolval, failurecode}
.LOCAL failsiglevel;
.LOCAL done;

AX0=^min_tone_level;
AY0=DM(%0);
AF=AY0-1;
AR=AX0+AF;
I5=AR; {I5 points to ^min_tone_level+whichrow-1}
AX1=DM(%1);
AY1=DM(I5,M4);
AR=AX1-AY1;
IF LT JUMP failsiglevel;

AY0=3;
AR=AX0+AY0;
AY0=DM(%2);
AR=AR+AY0;
I5=AR; {I5 points to ^min_tone_level+4+whichcol-1}
AX1=DM(%3);
AY1=DM(I5,M4);
AR=AX1-AY1;
IF GE JUMP done;

failsiglevel: AX0=0;
DM(%0)=AX0;
DM(%2)=AX0;
AY0=fail_minsig;
DM(%4)=AY0;

done: NOP;
.ENDMACRO;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

491491491491491

{%%}
{ verify that only one valid row freq and col freq are present }
{ }
{ INPUT: pointer to top of channel’s mnsqr buffer }
{ index of detected row and col tones }
{ OUTPUT: failurecode set if test fails }
{ }
.MACRO no_other_peaks(%0, %1, %2, %3);

{^mnsqr, whichrow, whichcol, failurecode}
.LOCAL looper;
.LOCAL failrelpeak;
.LOCAL done;

I2=%0;
I6=^max_notone_level;
AF=PASS 0;
CNTR=8;
DO looper UNTIL CE;

AX0=DM(I6,M4);
AY0=DM(I2,M0);
AR=AX0-AY0;

looper: IF LT AF=AF+1;
AX1=2; {see if only 2 tones are over their}
AR=AX1-AF; {max notone level thresholds}
IF EQ JUMP done;

failrelpeak: AX0=0; {clear whichrow,col}
DM(%1)=AX0;
DM(%2)=AX0;
AY0=fail_relpeak;
DM(%3)=AY0; {set failurecode}

done: NOP;
.ENDMACRO;

(listing continues on next page)

1414141414

 492 492 492 492 492

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

{%%}
{ checks difference between row tone level and col tone level (twist) }
{ }
{ INPUT: index of detected row and col tones }
{ value of detected row and col tones }
{ OUTPUT: forward twist flag or reverse twist flag set }
{ twist value(row/col [fwd] or col/row [rev]) }
{ failurecode set if test fails }
{ }
.MACRO twisttests(%0, %1, %2, %3, %4, %5, %6, %7);

{maxrowval, maxcolval, fortwistflag, revtwistflag,
whichrow, whichcol, twistval, failurecode}

.LOCAL standard;

.LOCAL reverse;

.LOCAL failtwist;

.LOCAL done;

MX0=0;
MX1=1;
AX0=DM(%0);
AY0=DM(%1);
AR=AX0-AY0;
IF GT JUMP reverse;

standard: DM(%2)=MX1; {column tone is stronger}
DM(%3)=MX0;
AX0=DM(%1);
AY0=DM(%0);
AF=PASS AY0;
AY0=0;
DIVS AF,AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
DM(%6)=AY0; {AY0 = maxrowval / maxcolval}
AX0=DM(maxfortwist);
AR=AX0-AY0;
IF GT JUMP failtwist;
JUMP done;

reverse: DM(%2)=MX0;
DM(%3)=MX1; {row tone is stronger}
AF=PASS AY0;
AY0=0;
DIVS AF,AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

493493493493493

DM(%6)=AY0; {AY0 = maxcolval / maxrowval}
AX0=DM(maxrevtwist);
AR=AX0-AY0;
IF GT JUMP failtwist;
JUMP done;

failtwist: DM(%4)=MX0;
DM(%5)=MX0;
AY0=fail_twist;
DM(%7)=AY0;

done: NOP;
.ENDMACRO;

{%%}
{ checks energy levels in second harmonics of detected tones }
{ }
{ INPUT: pointer to top of channel’s Goertzel feedback buffer }
{ index of detected row and col tones }
{ pointers to variables holding channel’s 2nd harmonic levels }
{ OUTPUT: value of channel’s row and col 2nd harmonic levels }
{ failurecode set if test fails }
{ }
.MACRO check2ndharm(%0, %1, %2, %3, %4, %5, %6, %7);

{^Q1Q2_buff, whichrow, ^rowharm, rowharm,
whichcol, ^colharm, colharm, failurecode}

.LOCAL fail2ndharm;

.LOCAL done;

AX0=%0;
AY0=DM(%1);
AR=AY0-1; {range: 1,2,3,4 => 0,1,2,3}
SR=ASHIFT AR BY 1 (HI); {range: 0,1,2,3 => 0,2,4,6}
AY1=16;
AF=SR1+AY1;
AR=AX0+AF;
I0=AR; {I0 points to ^Q1Q2_buff+16+2*(whichrow-1)}
AX0=^coefs;
AF=AX0+AY0;
AX0=7;
AR=AX0+AF;
I4=AR; {I4 points to ^coefs+8+whichrow-1}
I2=%2; {I2 points to ^rowharm}
CALL mnsqr;
AX0=DM(%3);
AY0=DM(max_2ndharm_level);
AR=AX0-AY0;
IF GT JUMP fail2ndharm;

(listing continues on next page)

1414141414

 494 494 494 494 494

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

AX0=%0;
AY0=DM(%4);
AR=AY0-1; {range 1,2,3,4 => 0,1,2,3}
SR=ASHIFT AR BY 1 (HI); {range 0,1,2,3 => 0,2,4,6}
AY1=24;
AF=SR1+AY1;
AR=AX0+AF;
I0=AR; {I0 points to ^Q1Q2_buff+16+8+2*(whichcol-

1)}
AX0=^coefs;
AF=AX0+AY0;
AX0=11;
AR=AX0+AF;
I4=AR; {I4 points to ^coefs+8+4+whichcol-1}
I2=%5; {I2 points to ^colharm}
CALL mnsqr;
AX0=DM(%6);
AY0=DM(max_2ndharm_level);
AR=AX0-AY0;
IF LT JUMP done;

fail2ndharm: AX0=0;
DM(%1)=AX0;
DM(%4)=AX0;
AY0=fail_2ndharm;
DM(%7)=AY0;

done: NOP;
.ENDMACRO;

{%%}
{ hexadecimal code for a given DTMF digit is generated and output if }
{ necessary, digit_history updated, failurecode cleared }
{ }
{ INPUT: index of detected row and col tones }
{ failurecode }
{ OUTPUT: digit_history updated with latest hex output code }
{ hex output code written to output port if both: }
{ (1) the current code is the same as the previous code }
{ (2) but different from the one before that }
{ failurecode cleared for next DTMF decode operation }
{ }
.MACRO outputcode(%0, %1, %2, %3, %4);

{whichrow, whichcol, digit_history, failurecode, dac}
.LOCAL checkfailures;
.LOCAL digitdetected;
.LOCAL nodigit;
.LOCAL readlist;
.LOCAL pushlist;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

495495495495495

checkfailures: AY0=DM(%3);
AR=PASS AY0;
IF NE JUMP nodigit;

digitdetected: AY0=DM(%1);
AR=AY0-1;
SR=LSHIFT AR BY 12 (HI);
AY0=DM(%0);
AR=AY0-1;
SR=SR OR LSHIFT AR BY 14 (HI);
JUMP readlist;

nodigit: SR1=baddigitcode;
readlist: AY0=DM(%2);

AY1=DM(%2+1);
AR=SR1-AY1;
IF EQ JUMP pushlist;
AR=SR1-AY0;
IF NE JUMP pushlist;
DM(%4)=SR1;

pushlist: DM(%2+1)=AY0;
DM(%2)=SR1;
AY0=pass_posttests;
DM(%3)=AY0;

.ENDMACRO;

{——}
{—————————— M A I N C O D E ———————————————————————————}
{——}

RTI; RTI; RTI; JUMP sample;

CALL setup;
CALL restart;
IMASK=b#1000;

here: JUMP here;

{——}
{——— I N T E R R U P T S E R V I C E R O U T I N E ———}
{——}

sample: get_sample(A_codec);
get_sample(B_codec);
get_sample(C_codec);
get_sample(D_codec);
get_sample(E_codec);
get_sample(F_codec);
{edit this for more channels}

(listing continues on next page)

1414141414

 496 496 496 496 496

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

dec201: AY0=DM(count201);
AR=AY0-1;
DM(count201)=AR;
IF LT JUMP dec4;

in201: CNTR=channels; {number of channels}
DO chan201 UNTIL;

AY1=DM(I3,M0); {get sample for channel, AY1=1.15}
CNTR=16; {8 fundamentals, 8 2nd_harmonics per channel}
DO freq201 UNTIL CE;

MX0=DM(I0,M0), MY0=PM(I4,M4); {get Q1,COEF Q1=1.15,COEF=2.14}
MR=MX0*MY0(RND), AY0=DM(I0,M1); {mult,get Q2, MR=2.30, Q2=1.15}
SR=ASHIFT MR1 BY 1 (HI); {change 2.30 to 1.15}
AR=SR1-AY0; {Q1*COEF - Q2, AR=1.15}
AR=AR+AY1; {Q1*COEF - Q2 + input, AR=1.15}
DM(I0,M0)=AR; {result = new Q1}

freq201: DM(I0,M0)=MX0; {old Q1 = new Q2 }
chan201: NOP; {do next channel}

RTI;

dec4: AY0=DM(count4);
AR=AY0-1;
DM(count4)=AR;
IF LT JUMP last;

in4: CNTR=channels; {number of channels}
DO chan4 UNTIL CE;

AY1=DM(I3,M0);
CNTR=8; {8 fundamentals only}
DO freq4 UNTIL CE;

MX0=DM(I0,M0), MY0=PM(I4,M4);
MR=MX0*MY0(RND), AY0=DM(I0,M1);
SR=ASHIFT MR1 BY 1 (HI);
AR=SR1-AY0;
AR=AR+AY1;
DM(I0,M0)=AR;

freq4: DM(I0,M0)=MX0;
MODIFY(I0,M2); {skip 2nd harmonic Q1Q2s}

chan4: MODIFY(I4,M5); {skip 2nd harmonic COEFs}
RTI;

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

497497497497497

last: CNTR=channels;
DO chanlast UNTIL CE;

CNTR=8;
DO freqlast UNTIL CE;

CALL mnsqr;
freqlast: NOP;

MODIFY(I0,M2); {skip 2nd harmonic Q1Q2s}
chanlast: MODIFY(I4,M5); {skip 2nd harmonic COEFs}

maxrowcol(^A_mnsqr,A_maxrowval,A_whichrow,A_maxcolval,A_whichcol);
maxrowcol(^B_mnsqr,B_maxrowval,B_whichrow,B_maxcolval,B_whichcol);
maxrowcol(^C_mnsqr,C_maxrowval,C_whichrow,C_maxcolval,C_whichcol);
maxrowcol(^D_mnsqr,D_maxrowval,D_whichrow,D_maxcolval,D_whichcol);
maxrowcol(^E_mnsqr,E_maxrowval,E_whichrow,E_maxcolval,E_whichcol);
maxrowcol(^F_mnsqr,F_maxrowval,F_whichrow,F_maxcolval,F_whichcol);
{edit this for more channels}

{————————— START OF DIGIT VALIDATION TESTS ——————————}

minsiglevel(A_whichrow,A_maxrowval,A_whichcol,A_maxcolval,A_failurecode);
minsiglevel(B_whichrow,B_maxrowval,B_whichcol,B_maxcolval,B_failurecode);
minsiglevel(C_whichrow,C_maxrowval,C_whichcol,C_maxcolval,C_failurecode);
minsiglevel(D_whichrow,D_maxrowval,D_whichcol,D_maxcolval,D_failurecode);
minsiglevel(E_whichrow,E_maxrowval,E_whichcol,E_maxcolval,E_failurecode);
minsiglevel(F_whichrow,F_maxrowval,F_whichcol,F_maxcolval,F_failurecode);
{edit this for more channels}

no_other_peaks(^A_mnsqr,A_whichrow,A_whichcol,A_failurecode);
no_other_peaks(^B_mnsqr,B_whichrow,B_whichcol,B_failurecode);
no_other_peaks(^C_mnsqr,C_whichrow,C_whichcol,C_failurecode);
no_other_peaks(^D_mnsqr,D_whichrow,D_whichcol,D_failurecode);
no_other_peaks(^E_mnsqr,E_whichrow,E_whichcol,E_failurecode);
no_other_peaks(^F_mnsqr,F_whichrow,F_whichcol,F_failurecode);
{edit this for more channels}

twisttests(A_maxrowval,A_maxcolval,A_fortwistflag,A_revtwistflag,
A_whichrow,A_whichcol,A_twistval,A_failurecode);

twisttests(B_maxrowval,B_maxcolval,B_fortwistflag,B_revtwistflag,
B_whichrow,B_whichcol,B_twistval,B_failurecode);

twisttests(C_maxrowval,C_maxcolval,C_fortwistflag,C_revtwistflag,
C_whichrow,C_whichcol,C_twistval,C_failurecode);

twisttests(D_maxrowval,D_maxcolval,D_fortwistflag,D_revtwistflag,
D_whichrow,D_whichcol,D_twistval,D_failurecode);

twisttests(E_maxrowval,E_maxcolval,E_fortwistflag,E_revtwistflag,
E_whichrow,E_whichcol,E_twistval,E_failurecode);

twisttests(F_maxrowval,F_maxcolval,F_fortwistflag,F_revtwistflag,

(listing continues on next page)

1414141414

 498 498 498 498 498

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

F_whichrow,F_whichcol,F_twistval,F_failurecode);
{edit this for more channels}

check2ndharm(^A_Q1Q2_buff,A_whichrow,^A_rowharm,A_rowharm,
A_whichcol,^A_colharm,A_colharm,A_failurecode);

check2ndharm(^B_Q1Q2_buff,B_whichrow,^B_rowharm,B_rowharm,
B_whichcol,^B_colharm,B_colharm,B_failurecode);

check2ndharm(^C_Q1Q2_buff,C_whichrow,^C_rowharm,C_rowharm,
C_whichcol,^C_colharm,C_colharm,C_failurecode);

check2ndharm(^D_Q1Q2_buff,D_whichrow,^D_rowharm,D_rowharm,
D_whichcol,^D_colharm,D_colharm,D_failurecode);

check2ndharm(^E_Q1Q2_buff,E_whichrow,^E_rowharm,E_rowharm,
E_whichcol,^E_colharm,E_colharm,E_failurecode);

check2ndharm(^F_Q1Q2_buff,F_whichrow,^F_rowharm,F_rowharm,
F_whichcol,^F_colharm,F_colharm,F_failurecode);

{edit this for more channels}

{—————————— END OF DIGIT VALIDATION TESTS —————————}

outputcode(A_whichrow,A_whichcol,A_digit_history,A_failurecode,A_dac);
outputcode(B_whichrow,B_whichcol,B_digit_history,B_failurecode,B_dac);
outputcode(C_whichrow,C_whichcol,C_digit_history,C_failurecode,C_dac);
outputcode(D_whichrow,D_whichcol,D_digit_history,D_failurecode,D_dac);
outputcode(E_whichrow,E_whichcol,E_digit_history,E_failurecode,E_dac);
outputcode(F_whichrow,F_whichcol,F_digit_history,F_failurecode,F_dac);
{edit this for more channels}

CALL restart;
RTI;

{———}
{—————————— S U B R O U T I N E S ——————————————————}
{———}

{%%%%%%%%%%% O N E T I M E O N L Y S E T U P %%%%%%%%%%%%%}
{ initializes digit_history lists, M and L registers in }
{ address generators, and sets ICNTL to edge-sensitive }

setup: SI=baddigitcode;
DM(A_digit_history)=SI; DM(A_digit_history+1)=SI;
DM(B_digit_history)=SI; DM(B_digit_history+1)=SI;
DM(C_digit_history)=SI; DM(C_digit_history+1)=SI;
DM(D_digit_history)=SI; DM(D_digit_history+1)=SI;
DM(E_digit_history)=SI; DM(E_digit_history+1)=SI;
DM(F_digit_history)=SI; DM(F_digit_history+1)=SI;
{edit this for more channels}

1414141414Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

499499499499499

L0 = channels_x_32;
L1 = 0;
L2 = 0;
L3 = channels;
L4 = 16;
L5 = 0;
L6 = 0;
L7 = 0;

M0 = 1;
M1 = -1;
M2 = 16;
M4 = 1;
M5 = 8;

ICNTL=b#01111;
RTS;

{%%%%%%%%%%%%% E V E R Y T I M E S E T U P %%%%%%%%%%%%%%%%%}
{ resets pointers to top of buffers, resets counter values, }
{ clears Goertzel feedback buffers to zero, etc }

restart: I0=^A_Q1Q2_buff;
CNTR=channels_x_32;
DO zloop UNTIL CE;

zloop: DM(I0,M0)=0;
I2=^A_mnsqr;
I3=^in_samples;
I4=^coefs;
AX0=201; DM(count201)=AX0;
AX0=4; DM(count4)=AX0;
AX0=h#00FF;
AX1=^mu_lookup_table;
RTS;

1414141414

 500 500 500 500 500

Dual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-FrequencyDual-Tone Multi-Frequency

{%%%%%%%%%% S Q U A R E D M A G N I T U D E C A L C %%%%%%%%%%%%%%%%}
{ calculates squared magnitude (mnsqr) from Goertzel feedback results }

mnsqr: MX0=DM(I0,M0); {get two copies of Q1, 1.15}
MY0=MX0;
MX1=DM(I0,M0); {get two copies of Q2, 1.15}
MY1=MX1;
AR=PM(I4,M4); {get COEF, 2.14}
MR=0;
MF=MX0*MY1(RND); {Q1*Q2, 1.15}
MR=MR-AR*MF(RND); {-Q1*Q2*COEF, 2.14}
SR=ASHIFT MR1 BY 1 (HI); {2.14 -> 1.15 format conv., 1.15}
MR=0;
MR1=SR1;
MR=MR+MX0*MY0(SS); {Q1*Q1 + -Q1*Q2*COEF, 1.15}
MR=MR+MX1*MY1(RND); {Q1*Q1 + Q2*Q2 + -Q1*Q2*COEF, 1.15}
DM(I2,M0)=MR1; {store in mnsqr buffer, 1.15}
RTS;

.ENDMOD;
processor interrupts. The length of time required by the processor for the
second task may span the next few interrupts (during which time input
samples are ignored), depending on the tones detected.

Listing 14.2 DTMF Decoder ProgramListing 14.2 DTMF Decoder ProgramListing 14.2 DTMF Decoder ProgramListing 14.2 DTMF Decoder ProgramListing 14.2 DTMF Decoder Program

	Chapter 14: Dual-Tone Multi-Frequency Coding
	14.1 Introduction
	14.2 Advantages of Digital Implementations
	14.3 DTMF Standards
	14.4 DTMF Digit Generation Program
	14.4.1 Digit Entry
	14.4.1.1 Key Pad Entry
	14.4.1.2 Data Memory List

	14.4.2 Dialing Demonstration
	14.4.3 Multi-Channel Generation

	14.5 Decoding DTMF Signals
	14.5.1 DFTs and FFTs
	14.5.2 Goertzel Algorithm
	14.5.2.1 Feedback Phase
	14.5.2.2 Feedforward Phase
	14.5.2.3 Choosing N and k

	14.5.3 DTMF Decoding Program
	14.5.3.1 Input Scaling
	14.5.3.2 Multi-Channel DTMF Decoder Software
	14.5.3.3 Constants, Variables and I/O Ports
	14.5.3.4 Main Code
	14.5.3.5 Interrupt Service Routine
	14.5.3.6 Post-Testing and Digit Validation
	Maxrowcol
	Minsiglevel
	No_Other_Peaks
	Twisttests
	Check2ndharm
	Outputcode
	Restart

	14.5.3.7 Performance Considerations

	14.6 References
	14.7 Program Listings
	14.7.1 DTMF Encoder Listing
	14.7.2 DTMF Decoder Listing

